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We study multicellular tumor spheroids by introducing a new three-dimensional agent-based Voronoi-
Delaunay hybrid model. In this model, the cell shape varies from spherical in thin solution to convex polyhe-
dral in dense tissues. The next neighbors of the cells are provided by a weighted Delaunay triangulation with
on average linear computational complexity. The cellular interactions include direct elastic forces and cell-cell
as well as cell-matrix adhesion. The spatiotemporal distribution of two nutrients—oxygen and glucose—is
described by reaction-diffusion equations. Viable cells consume the nutrients, which are converted into biom-
ass by increasing the cell size during the G1 phase. We test hypotheses on the functional dependence of the
uptake rates and use computer simulations to find suitable mechanisms for the induction of necrosis. This is
done by comparing the outcome with experimental growth curves, where the best fit leads to an unexpected
ratio of oxygen and glucose uptake rates. The model relies on physical quantities and can easily be generalized
towards tissues involving different cell types. In addition, it provides many features that can be directly
compared with the experiment.
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I. INTRODUCTION

The spatiotemporal dynamics of individual cells often
leads to the emergence of fascinating complex patterns in
cellular tissues. For example, during embryogenesis it is hy-
pothesized that these complex patterns develop with the aid
of mechanisms such as diffusing messengers and cell-cell
contact. Sometimes these patterns can be described very well
with a simple model. Such mathematical models can help to
test hypotheses inin silico experiments, thereby circumvent-
ing real experiments which are very often expensive and
time consuming. However, since the local nature of cell-cell
interactions is not precisely known, one is often restricted to
compare the global outcome following from different hy-
potheses with experimental data. Unfortunately, there are—
unlike in theoretical physics—no established first-principles
theories in cell tissue modeling which explains that there are
a variety of models on the market, which can be classified as
follows.

First, there is a class of models where one derives con-
tinuum equations for the cell populations. In analogy to
many-particle physics one replaces the actual information on
every cell by a cellular density. Consequently, the equations
of motion can be simplified considerably to a differential
equation describing the spatiotemporal dynamics of a cell
type. In practice these equations do very often have the type
of reaction-diffusion equationsf1g. The volume integral of
such equations results in the global dynamics of a whole
populationse.g., predator-prey modelsd, where only the tem-
poral development of the total population is monitored. Note,
however, that cellular interactions can only be modeled ef-

fectively with these approaches. Also, the discrete and indi-
vidual nature of cells is completely neglected.

The discrete nature can be taken into account by deriving
master equations for the population number on every volume
element f2g. By mapping these master equations to a
Schrödinger equation one is able to identify a Hamilton op-
erator that allows a physicist to apply the mathematical
framework of quantum field theory to systems such as cell
tissues. For example, in the simple case of Lotka-Volterra
equationsf1g this method leads to mean-field equations that
resemble the Lotka-Volterra equations. The renormalized nu-
merical resultsf3g, however, may disagree qualitatively with
the mean-field approximations. Consequently, the discrete
nature of cells may not always be neglected. Still, the above
quantization assumes all agents to be identical and indistin-
guishable and inevitably neglects the individuality of cells.
Therefore, features such as cell shape and differences in cell
size or internal properties are not considered in this class of
models.

This is different in the third class of agent-based models,
where cells are represented by individually interacting ob-
jects. Since now every single cell must be included in the
computer simulations, the computational intensity increases
considerably. This, however, opens often the possibility to
choose the interaction rules intuitively from existing obser-
vations. These models are usually restricted to a certain cell
shape, which enables one to subclassify them further: In
lattice-based modelsf4,5g the cellular shape is usually al-
ready defined by the shape of the elementary cell of the
lattice, such as, e.g., cubicf6g or hexagonalf7,8g. Off-lattice
models are usually restricted to one special cell form and
consider slight perturbationsse.g., deformable spheresf9,10g
or deformable ellipsoidsf11–13gd. In other off-lattice models
the geometrical Voronoi tessellationf14,15g is used, which
allows for more variations in cell shape and size. In addition,*Electronic address: schaller@theory.phy.tu-dresden.de
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it comes very close to the polyhedral shape observed for
some cell typesf16g. An important advantage of off-lattice
models is that perturbations from the inert cell shape can
give rise to physically well-defined cellular interaction
forces, whereas in lattice-based models one is usually forced
to introduce effective interaction rules which makes it diffi-
cult to relate the model parameters to experimentally acces-
sible quantities.

Since cell shape and function are usually closely con-
nectedse.g., fibroblasts in the human skin do have a different
shape than melanocytes or keratinocytesd, there are some
models that try to reproduce any possible cell shape. For
example, in the extended Potts modelf17–20g one has spins
on several lattice nodes describing a single cell. The dynam-
ics of these spins is calculated by minimizing an energy
functional. The often-used Metropolis algorithm tests several
spin flips for a decrease of the energy. A Metropolis time step
is defined as having performed as many checks for spin flips
as there are spins. The parameters in the energy functional
have to be determined heuristically as it is difficult to map
them to experimentally accessible microscopic properties.
For example, volume conservation is usually handled by a
penalty term which acts equally strong for both compression
and elongation. The usual practice of relating the Monte
Carlo time step to physical time is not unique: There are
cellular proliferation times, cellular compression relaxation
times, etc. Finally, the enormous number of spins required to
appropriately describe a single cell leads to an enormous
computational complexity that restricts the model to small
cell numbers. This problem is circumvented in force-based
models. For example, inf21g the relation of cell shape and
cell motility has been investigated in a model that represents
cells as a collection of cell fragments on a lattice. Other
models describe cell shape on a two-dimensional hypersur-
face by a changing number of polygonal nodesf22,23g,
which is also computationally expensive. Inf24g, the initial
configuration of the nodes bordering the polyhedral cells is
deduced from a Voronoi tessellation of the cell centers,
whereas the Voronoi concept is discarded during the dynam-
ics, since every border node has its own dynamics. Gener-
ally, the latter models always need a large number of general
coordinates to define the shape or status of a cell and are
therefore restricted to a relatively small number of cells—
even at present computational power.

Balancing these reasons in the context of the aimed de-
scription of in vitro tumor growth data we decided to use an
off-lattice agent-based model, where one has the advantage
of allowing continuous cell positions. Therefore the extent
by which cellular interactions have to be replaced by effec-
tive automaton rules is much smaller than in corresponding
cellular automataf8g. In addition, the model parameters can
be directly measured in independent experiments. The enor-
mous computational intensity common to most existing off-
lattice models is due to two effects: First, some off-lattice
modelsf5g use effective stochastic interaction rules, which
require stochastic solution methods such as the Metropolis
algorithm. The infinite number of possibilities in a continu-
ous model, however, requires a large part of the phase space
to be tested. Second, the determination of the neighborship
topology for local interactions requires sophisticated algo-

rithms. Our model uses the weighted Delaunay triangulation
which provides the correct neighborship topology for a set of
spheres with different radii with on average constant access
f15g. In addition, the model is dominantly deterministic
which abolishes the necessity to test irrelevant parts of the
phase space.

Unlike in two dimensions, where tumor cells inin vitro
setups will proliferate without limitation, there exist growth
limitations on tumor cell populations forming solid spheroi-
dal cell aggregates in three dimensionsf25g. This limitation
of growth is presumably due to both contact inhibition—
which is also active in two dimensionsf10g—and nutrient
depletion in the interior of the spheroid. Initially, the cell
number grows exponentially and enters a polynomial growth
phase after some days in culture. Finally, a saturation of
growth is observed for many spheroid systemsf26g. The final
stages of spheroid growth exhibit a typical pattern in the
cross sections: An internal necrotic core is surrounded by a
layer of quiescent cells—which do not proliferate—and on
the outside one has a layer of proliferating cellsf27g. The
final stage depends critically on the supply with nutrients
such as oxygen and glucose. The model we have imple-
mented enables us to modelOs105d cells which is in agree-
ment with cell numbers observed in multicellular tumor
spheroid systemsf26g. We will demonstrate that the growth
curves measured inf26g for different nutrient concentrations
can be reproduced using a single parameter set and simple
assumptions for cellular interactions.

II. CELL MODEL

In our model we assume cells to be deformable spheres
with dynamic radii, which is motivated by the experimental
observation that cells in a solution tend to be spherical—
presumably in order to minimize their surface energy. Con-
sequently, we treat all deviations from this spherical form as
perturbations from the inert cellular shape.

The model is agent basedssometimes also called indi-
vidual basedd; i.e., every biological cell is represented by an
individual object. These objects interact locally with their
next neighborssthose that follow from the weighted De-
launay triangulationd and with a reaction-diffusion gridsfor
nutrients or growth signalsd. Each cell is characterized by
several individual parameters such as position, a radius, the
type corresponding to biological classifications, the status
sposition in the cell cycled, cellular tension, receptor and
ligand concentrations on the cell membrane, an internal
clock, and cell-type-specific coupling constants for elastic
and adhesive interactions. Since we assume the inert cell
shape to be spherical, the power-weighted Delaunay triangu-
lation f15g is a perfect tool to determine the neighborship
topology.

A. Elastic and adhesive cell-cell interactions

Following a model of Hertzf28,29g—which has already
been used in the framework of cell tissuesf10,30g—the ab-
solute value of the elastic force between two spheres with
radii Ri andRj can, for small deformations, be described as
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whereEi/ j andni/ j represent the elasticities and Poisson ratios
of the spheres, respectively. The quantityhij =maxh0,Ri +Rj

− ur i −r juj represents the maximum overlap the spheres would
have if they would not deform but interpenetrate each other;
see Fig. 1. In principle the repulsive force resulting from Eq.
s1d could be overturned since it does not diverge for large
overlaps. However, additional mechanismsscontact inhibi-
tiond ensure that in practice the cells will respect a minimum
distance from each other. In addition, the overlaps lead to a
deviation of the actual cell volumesset intersection of
Voronoi and sphere volumed from the intrinsicstargetd cell
volume. Therefore the cell volume is only approximately
conserved within this approach.

In reality this model might not be adequate for cells: First,
the mechanics of the cytoskeleton is not well represented
which might yield other than purely elastic responsesssee,
e.g., f11,31gd. Second, Eq.s1d represents only a first-order
approximation which is valid for small virtual overlapshij
!minhRi ,Rjj only. As cellular mechanics is known to be not
only viscoelastic but also viscoplasticf32g, a more exact ap-
proach would followf12,13g by replacing cells by equivalent
networks containing elastic and viscoussinternal cell fric-
tiond elements. However, the parameters required for such a
model should either be measured for every cell type indepen-
dently or they should be derived from a microscopic model
of the cytoskeleton such as, e.g., tensegrity structures
f33,34g, which is beyond the scope of this article. Conse-
quently, internal cell friction is neglected. In addition, the
Hertz model is only valid for two-body contacts, since for an
exact treatment prestress and the difficult elastic problem of
multiple overlaps will have to be considered as well. There-
fore, especially in the case of multiple sphere overlapsscf.
Fig. 2d the Hertz model will underestimate the actual repul-
sion.

However, in this article we would like to restrict ourselves
to the simple purely elastic models1d, since it allows the
independently measurable experimental quantitiesni and Ei
to be directly included.

Intercellular adhesion in a tissue is mediated by receptor
and ligand molecules that are distributed on the cell mem-
branes. For simplicity, we neglect a possible dynamical clus-
tering of adhesion molecules and assume them to be—on
average—uniformly distributed. The resulting average adhe-
sive forces between two cells should then scale with their
contact areaAij ssee also, e.g.,f13gd and can be estimated as

Fij
ad= Aij f

ad1

2
sci

reccj
lig + ci

ligcj
recd, s2d

where the receptor and ligand concentrationsci
rec/lig are as-

sumed to be normalizedsi.e., 0øci
rec/ligøci

rec/lig:maxø1d
without loss of generality, since the—globally valid—
coupling constantfad can always be rescaled by absorbing
the maximum possible densities of receptors and ligands.
Therefore the receptor and ligand concentrations do not have
units but just represent the binding strength relative to a
maximum binding absorbed infad within this model. The
contact surface areaAij can be estimated using the contact
surface of two overlapping spheresAij

sphere—see Fig. 1.
Two issues need to be discussed in this respect: First, the

Hertz model predicts a contact surface ofAij
Hertz=pshi

+hjdRiRj / sRi +Rjd, which is in the physiologic regime of pa-
rameters considerably smaller than the spherical contact sur-
face Aij

sphere=pshiRi +hjRj −hi
2/2−hj

2/2d. However, the
spherical contact surfaces describe real tissue much more
realistically than the Hertz contact surface, which should
consequently rather be termed effective in the context of cel-
lular interactions. In the used physiologic regime of overlaps
the two contact surfaces have the same scaling in the first
order. Therefore, a rescaling of the effective adhesive con-
stant fad will replace the spherical contact surface by the
Hertz contact surface. Second, in dense tissues the spherical
contact surface is not a valid description anymore, since the
contact surfaces of many spheres might overlap as in Fig. 2,
inferring double counting of surfaces and thus overestimat-
ing of the total cell surface.

FIG. 1. Two-dimensional illustration of interpenetrating spheres
with maximum overlaphij and sphere contact surfaceAij smarked
boldd. In reality, the spheres will deform and generate a repulsive
force.

FIG. 2. Within dense tissues, many sphere overlaps can occur. If
in this case the Voronoi contact surfacesmarked with a bold lined is
smaller than the sphere contact surface, it will provide a more real-
istic estimate of the cellular contact surfaces.
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The weighted Voronoi tessellationf15,35g of a set of
sphereshr i ,Rij,

Vistd = hx P Rn:fx − r istdg2 − Ri
2std ø fx − r jstdg2 − Rj

2std ∀ j

Þ ij, s3d

divides space into Voronoi regions—convex polyhedra that
may in some sense be associated with the space occupied by
cell i ssee Figs. 2 and 3d. This correspondence, however, is
deceptive, as one can easily show that Eq.s3d leads to infi-
nitely large intercellular contact surfaces at the boundary of
the convex hull of the pointshr ij. In addition, in the case of
a low cellular density the surfaces and volumes defined by
the purely geometric approachs3d will evidently overshoot
the actual cellular contact surfaces and volumes by orders of
magnitude. On the other hand, Voronoi contact surfaces have
been shown to approximate the cell shape in tissues remark-
ably well—at least in two-dimensional cross sectionsf16g.
Therefore, in order to have a contact surface estimate valid
for different modeling environments we use a combination of
the two approaches by setting

Aij = minhAij
sphere,Aij

Voronoij. s4d

In order to use the Voronoi surface, cells do not only have to
be in contact, but the Voronoi contact surface must be
smaller than the spherical contact surface, which can be the
case for multiple cell contacts; compare Fig. 2. This combi-
nation leads to upper bounds of intercellular contact surfaces
on tissue boundaries and preserves the Voronoi surfaces
within dense tissues by yielding a continuous transition be-

tween the two estimates. The underestimation of the repul-
sive forces in dense tissues within the Hertz model is in parts
compensated for by using the Voronoi-based decreased adhe-
sive forces, thereby leading to an increased net repulsion.
Depending on the local cellular deformations the difference
between the spherical and Voronoi contact surfaces can be in
the range of 30% within dense tissues.

Note that Eqs.s1d ands2d allow for different cell types by
introducing varying radii, elastic moduli, and receptor and
ligand concentrations. All forces act in the direction of the
normals to the next neighbors and on the center of the
spheres. The total force on the celli is then determined by
performing a sum over the next neighborsF i =o jPNNsidsF i j

ad

−F i j
eld ·ni j and in addition we record the sum of the normal

tensions,

Pi = o
jPNNsid

uF i j ·ni j u
Aij

, s5d

whereni j denotes the unit vector pointing from celli to cell
j . The list of next neighbors is efficiently provided by the
Delaunay triangulation. Once a force has been calculated, the
corresponding spatial step can be computed from the equa-
tions of motionf11,12g,

mir̈ i
astd = Fi

astd − o
b

gi
abṙ i

bstd − o
b

o
j

gi j
abfṙ i

bstd − ṙ j
bstdg,

s6d

where the upper Greek indicesa ,bP h0,1,2j denote the co-
ordinates and the lower Latin indicesi , j P h0,1, . . . ,N−1j
the index of the cell under consideration. The adhesive or
repulsive forces as well as possible random forces on celli
are contained in the termFi

a, whereas the coefficientsgi
ab

andgi j
ab represent cell-medium and cell-cell friction, respec-

tively. A common isotropic choice for cell-medium friction is
the normal Stokes relation

gi
ab,visc= 6phRid

ab, s7d

which describes the friction of a sphere with radiusRi within
a medium of viscosityh.

Most tissue simulations use the overdamped approxima-
tion mir̈ i

astd<0 ∀i ,a ,t, which is an adequate approximation
for cell movement in mediumf36g, since the estimated Rey-
nolds numbers are extremely smallf11g. Evidently, since ad-
ditional adhesive bindings are at work, cellular movement in
a tissue is even more dampedf37g. In the overdamped ap-
proximation, Eq.s6d reduces to a 3N33N linear system that
is sparsely populated and therefore can in principle be solved
using an iterative methodf11g. However, the large number of
cells involved in larger multicellular tumor spheroids would
make this approach inefficient—in terms of both storage and
execution time—and limits the simulations toOs105d cells. It
is also not clear whether this intercellular drag force term
significantly contributes. We have omitted this term and
compensate for this by a modified friction model which re-
spects that the movement of bound cells is considerably in-
hibited. In addition, one should keep in mind that within
dense tissues many intercellular contacts are mediated by the

FIG. 3. Visualization of two intersecting circlessspheresd and
their corresponding Voronoi domains in twosthreed dimensions.
The position and orientation of the Voronoi contact linesplaned
coincides with the circlessphered intersection. The Voronoi surfaces
are also determined by the positions of other cellssnot shown hered.
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extracellular matrixswith zero velocityd. Such a friction term
will rather contribute to the diagonal part of the dampening
matrix. Therefore, we chose to approximate the term with the
velocity differences by increasing the isotropic cell-medium
friction coefficient by another term—i.e.,gi

ab=gi
ab,visc

+gi
ab,ad=gid

ab, with

gi
ab,ad= gmaxdab o

jPNNsid
Aij

1

2
S1 −

F i ·ni j

uF iu
D 3

1

2
sci

reccj
lig

+ ci
ligcj

recd, s8d

as illustrated in Fig. 4. Note that the above ansatz for the
friction coefficient scales with the intercellular contact sur-
faces and therefore cells having many bounds to next neigh-
bors will move less than unbound cells. This is not an iso-
tropic choice, since the forces contribute to its calculation.
Using these approximations, the systems6d becomes diago-
nal; i.e., one has

ṙ i =
F i

gi
. s9d

As an option the model is capable of including random
forces in order to mimic random cellular movement. How-
ever, the corresponding physiologic cellular diffusion coeffi-
cients are in the range ofOs10−4 mm2/sd, which leads to
small displacements only. In the case of growing tumor sphe-
roids, the proliferation-driven tumor front will generally
overtake cells that have separated due to random movements.
The stochastic nature contained in the mitotic direction and
the duration of the cell cycle obviously suffices to yield iso-
tropic tumor spheroids. The simulations shown here have
therefore been performed without an additional stochastic
force, unless otherwise noted.

B. Cell cycle

In our model, cells have different internal states, which
we chose to closely follow the cell cycle in order to make
comparisons with experimental data as intuitive as possible.
Consequently, the cellular status determines the actions of
the cellular agents. We distinguish between five states: G1
phase, S/G2 phase, M phase, G0 phase, and necrotic; see also
Fig. 5.

During the G1 phase, the cell volume grows at a constant

rate rV, i.e., the radius increases according toṘ
=s4pR2d−1rV, until the cell reaches its final mitotic radius
Rsmd. The volume growth raterV is deduced by assuming that
cell growth is only performed during the G1 phase,

rV =
2psRsmdd3

3tG1

, s10d

wheretG1
can be deduced from the minimum observed cycle

tmin time and the durations of the S/G2 phase and the M
phase. Afterwards, no further cell growth is performed. At
the end of the G1 phase a checkpointing mechanism is per-
formed where the cell can switch into G0 phase. If the cel-
lular tension exceeds the thresholdPcrit at this position in the
cell cycle, the cell enters the G0 phase; otherwise the cell
enters the S/G2 phase. Note that a different criterion for
entering or leaving the G0 phase would also be possible:
Cells might enter theG0 phase at any time in the cell cycle if
the local nutrient concentrations fall below thresholds or—
alternatively—if toxic substances exceed certain thresholds.
In the present paper we will restrict ourselves to interpreting
cellular quiescence as contact inhibition, since there is ex-
perimental evidence that in case of EMT6/Ro cells quies-
cence is not induced by lack of nutrientsf38,39g.

During the S phase the DNA for the new cell division is
synthesized, whereas during G2 phase the quality of the pro-
duced DNA is controlled. In our model we do not distinguish
between the S phase and G2 phase. At the beginning of the
phase the individual phase duration is determined using a
normally distributed random number generatorf40g with a
given mean and width. After this individual time has passed,
the cells enter mitosis.

At the beginning of the mitotic phase—which lasts for
about half an hour for most cell types—a mother cell divides
and is replaced by two daughter cells. In the model these are
slightly displaced in random direction; see Sec. II C. After-
wards the daughter cells are left to their initially dominating

FIG. 4. The extent to which adhesive bonds contribute to fric-
tion depends on the direction of movement and on the contact sur-
faces. If the total force and normal vector are parallel, the corre-
sponding contact surface will not contribute at all to the friction
coefficient in Eq.s8d, whereas the contribution will be strongest
with the force and normal vector being antiparallel.

FIG. 5. During cell division, cells reside in the M phase fortsmd.
Afterwards, the cell volume increases at a constant rate in the G1

phase, until the premitotic radiusRsmd has been reached. At the end
of the G1 phase, the cell can either continue the cell cycle or enter
the G0 phase, if the normal tensionPi exceeds a threshold. The
S/G2 phase lasts for a timetS/G2, after which mitosis is determin-
istically initiated. The necrotic state can be entered at all times in
the cell cycle.
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repulsive forcess1d. As in the S/G2 phase the individual
duration of the M phase is determined using a normally dis-
tributed random number generator. Afterwards the daughter
cells enter the G1 phase, thus closing the cell cycle. Note that
we do not differentiate between the internal phases of mito-
sis.

During the G0 phase, the cellular tension is monitored.
Cells reenter the cell cycle where they left itsi.e., at the
beginning of the S/G2 phased if the cellular tension falls
below the critical thresholdPcrit. Similar to the S/G2 phase
no growth is performed. Therefore, in our model, the differ-
ence between the S/G2 phase and the G0 phase is that the
duration of the first is determined by the normally distributed
individual time, whereas for the duration of the latter the
cellular tension is the determining factor. Consequently, the
cells in the G0 phase can serve as a reservoir of cells ready to
start proliferating as soon as there is enough space available,
which is common to many wound-healing modelsf10g.

Intuitively, cells enter necrosis as soon as the nutrient con-
centration at the cellular position falls below a critical thresh-
old. We study different mechanisms for the induction of ne-
crosis within the model and will be able to rule out possible
candidatesssee Sec. III Ad. Naturally, necrotic cells do not
consume any nutrients and do slowly decay. In our model
this is represented by removing these cells from the simula-
tion at a raternecr—without performing prior shrinking.

Note that the only stochastic elements involved so far are
the direction of mitosis and the durations of the M phase and
S/G2 phase. The first is required by the local assumption of
isotropy, whereas the latter is required by the fact that pro-
liferating cells having a common progenitor desynchronize
rather quicklysusually after about five generationsf41gd: For
these small systems ofOs25d cells mechanisms such as nu-
trient depletion or contact inhibition cannot explain the de-
synchronization.

C. Proliferation

A cell will divide when the end of the S/G2 phase has
been reached. The initial direction of mitosis is chosen ran-
domly from a uniform distribution on the unit spheref40g,
which is the simplest possible assumption. Note, however,
that since the cellular movement during the M phase is not
only determined by the mitotic partners but also by the sur-
rounding cells, the effective direction of mitosis may gener-
ally change during the M phase—depending on the configu-
ration of the next neighbors. The radii of the daughter cells
are decreased,Rsdd=Rsmd2−1/3, to ensure conservation of the
target volume during the M phase and the daughter cells are
placed at the distancedij

0 =2Rsmds1−2−1/3d to ensure that ini-
tially the deformations of surrounding cells do not change
drastic; see Fig. 6. One should be aware that at this stage the
forces calculated in Eq.s1d cannot represent the actual mi-
totic separation forces, since the considerable overlaph
=Rsmds25/3−2d generates strong elastic forces in Eq.s1d
which has then been applied far beyond its validity for small
deformations. Therefore, to ensure numerical stability, an
adaptive step-size control has to be applied in the numerical
solution of Eq.s6d—see the Appendix—since otherwise the

contact between the daughter cells might be lost immedi-
ately. Still, with an adaptive time step, the initial separation
of mitosis will happen on a time scale shorter than in reality.
To the sake of simplicity we will not use modified mitotic
forces within this article. One should keep in mind that the
relative shortness of the M phase in comparison with the
complete cell cycle leads to a small fraction of cells being in
the M phase. Therefore, we expect the consequences of our
simplifying assumption to be relatively small.

In Fig. 6 cells are shown at proliferation and right after
the M phase. The bell shape during mitosis resulting from
the model is in qualitative agreement with the physiologic
appearance of mitosis. One can also see that further intercel-
lular contacts may be lost if the neighboring cells reside per-
pendicularly to the direction of mitosis. The direction of mi-
tosis will generally change during the M phase—and thus
considerably differ from Fig. 6, lower panel—and thereby
the temporarily lost contact will on average be reestablished,
since the net forces will point to regions of low cell density
and thus lead to closure of the gaps. At the boundary of the
spheroid, however, cells may temporarily detach due to this
mechanism. Though this had not been intended, it does not
seem in contradiction with reality, since there exists experi-

FIG. 6. Illustration of the cell configuration right at proliferation
sleftd and at the end of the M phasesrightd. At cell division, the radii
of the daughter cells,Rsdd are decreased to ensure conservation of
the target volume during the M phase. The resulting strong repul-
sive forces drive the cells apart quickly. An adaptive time step con-
trol ensures that the mitotic partners do not lose contact during the
M phase.
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mental evidencef42g that EMT6/Ro tumor spheroids lose
cells at the boundary due to mitotic loosening. A macro-
scopic detachment of cells from the spheroid boundary has
not been observed in the simulation, since the spheroid
growth velocity has always been large enough to reestablish
contact after some time. However, such intermediate detach-
ment events may very well contribute to the overall apparent
growth velocity.

D. Nutrient consumption and cell death

We view cells as bioreactors where oxygen and glucose
react to waste products such as lactose, water, and carbon
dioxide. The clean combustion of glucose would require the
molar nutrient uptake rate of oxygen to be 6 times the molar
glucose uptake rate: C6H12O6+6O2→6H2O+6CO2. How-
ever, for tumor tissue this cannot be the case as it is well
known that in the direct vicinity of tumors the concentration
of lactic acid increases considerably which is direct evidence
for the incomplete combustion of glucose. By experimental
estimations of average oxygen and glucose uptake rates for
another cell line a considerable deviation from the ideal ratio
has been found with about 1:1f43g. For EMT6/Ro cells, in
f39g a ratio of about 1:3.9 is reported.

Thus, in our model all viable cells consume oxygen and
glucose, diffusing in the surrounding extracellular matrix at
specific but constant rates.

The nutrient uptake rates can in principle depend on the
cell type, the local concentration of both nutrients, the exis-
tence of internal cellular nutrient reservoirs, and many other
factors. However, few pieces of information about the quali-
tative dependence are known: most rates in the literature
ssee, e.g.,f43gd are average values given in units of mole per
seconds and volume of tissue since these data are obtained
from whole cell populations without regard to the individual
cell size, status, and local nutrient concentration. In addition,
the functional form of the dependence is unknown as well.
The simplest starting point is to assume that the nutrient
uptake rates only depend—if at all—on the local nutrient
concentration. For example, when dealing with a single nu-
trient, quite often a Michaelis-Menten-like concentration-
dependent nutrient uptake rate is assumed; see, e.g.,f44g.
This, however, means the introduction of further parameters
that may be difficult to fix with the data available.

Depending on the cell type and on the local nutrient con-
centrations cells undergo apoptosis and/or necrosis when
subject to nutrient depletionf26g. In this specific application
we choose necrosis as the dominant pathway to cell death
and neglect the effects of apoptosis though there is experi-
mental evidence that these processes are linked with each
other f45g. Necrotic cells are randomly removed from the
simulation with a raternecr. The effect of apoptosis in the
simulation would be similar, though apoptotic cells do not
break apart as necrotic cells but shrink and afterwards dis-
solve into small apoptotic bodiesf46g. For the overall out-
come of the total growth curve we expect insignificant
changes by including apoptosis into the model.

With our computer simulation model we can test different
hypotheses on which critical parameters may influence the

onset of necrosis: For example, there could be two critical
concentrations for both oxygen and glucose or just one com-
bined parameter with an unknown dependence on the local
concentrations. In addition, there could also be other pro-
cesses such as necrotic waste material inducing apoptosis
and/or necrosis, which will not be considered here.

E. Nutrient distribution

We consider the case of avascular tumor growth and
therefore assume that the transport of nutrients is performed
passively by diffusion. Consequently, the diffusion through
tumor tissue and also through the culture medium is de-
scribed by a system of reaction-diffusion equations

]uox/gluc

]t
= ¹W fDox/glucsx;td¹W uox/glucsx,tdg − rox/glucsx;td,

s11d

whereuox/glucsx ,td describes the local oxygen or glucose con-
centration,Dox/glucsx ; td the local effective oxygen or glucose
diffusion coefficientswhich depends implicitly on time via
the cellular positionsd, and rox/glucsx ; td the local oxygen or
glucose consumption rate. Though formally Eq.s11d might
admit negative nutrient concentrationsseven at low concen-
trations strong negative sink terms may in principle existd,
this can never happen in reality—provided the time step is
not too large: Cells will enter necrosissthereby stopping nu-
trient consumptiond if the local nutrient concentrations be-
come too small. As the reaction rates depend on the cellular
status, they become implicitly dependent on the nutrient con-
centrations; see also Secs. II B and II D.

In Eq. s11d we implicitly assume that the transport of
matter can be described by an effective diffusion coefficient.
This does not have to be the case, since cellular membranes
pose complicated boundary conditions especially for larger
molecules such as glucose. In addition, convection may also
contribute to matter transport. Only if the tissue is isotropic
on scales larger than a cell diameter is this assumption justi-
fied. Consequently, the discretization of Eq.s11d does only
make sense on lattices with spacings exceeding the cellular
diameters.

Though we use an effective diffusion coefficientDeff, it is
sometimes necessary to allow for diffusivities varying on
scales larger than the cell diameter—especially for larger
molecules. For example, the effective diffusion coefficient of
glucose is about 700mm2/s in water, whereas it is only
100 mm2/s in tissuef47g. This effect is less pronounced for
smaller molecules such as oxygen with about 2400mm2/s in
water and 1750mm2/s in tissuef48g. Consequently, when
modeling in vitro multicellular tumor spheroids one will
have to take spatially varying diffusivities into account to
appropriately model the nutrient concentrations on the spher-
oid boundary. In our model, the diffusion constant is set to
measured tissue diffusivities in the vicinity of cells and to the
normal diffusivities in water anywhere else. Therefore, by
considering varying diffusivities one is able to keep the rect-
angular shape of the diffusion grid which is favorable for the
numerical solution; see also the Appendix. Note that a
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diffusion-depletion zone as inf49g is thereby automatically
incorporated into the model. The difference is that here the
model does nota priori impose spherical symmetry. It can be
checked, however, by direct observation of the spherically
shaped nutrient isosurfaces that the rectangular shape of the
boundary does not greatly influence the nutrient distribution
near the tumor.

Another possibility would be to solve the nutrient diffu-
sion within the spheroid only by assuming a spherical tumor
symmetry with a time-dependent boundary moving with the
spheroid size. However, with such an approach the spherical
symmetry would not be an outcome but an intrinsic ingredi-
ent of the model. Consequently, in such a model the spheroid
shape would not be of any comparative value.

Equation s11d only has a defined solution if the initial
conditions and the boundary conditions are set. As inf26g it
has been verified that the nutrient concentration outside the
tumor spheroid did not vary strongly between the periodic
refilling of nutrients, we approximated the experimental sys-
tem by imposing Dirichlet boundary conditions throughout
the simulation. The corresponding initial and boundary con-
centrations have both been set to the values used in the ex-
periment.

III. RESULTS

A. Population dynamics

The overall cell number is a parameter which can be
quantified experimentally, either indirectly by simply calcu-
lating cell numbers from observed tissue volumes or directly
by extensive automated cell counting. Inf26g the cell num-
ber has been determined indirectly for different concentra-
tions of oxygen and glucose. With our model we have calcu-
lated growth curves for different nutrient concentrations and
different hypotheses of nutrient uptake and necrosis induc-
tion. The simulations have been compared with four series of
experimental data, where four different combinations of oxy-
gen and glucose concentrations have been investigated.
Naturally, within one set of simulations all parameters but

the nutrient concentrations have been kept fixed.
We have tested the possibility that there exist critical con-

centrations for the two nutrients separately. However, in this
case either the glucose or oxygen concentration dominantly
limits the cell population dynamics. This does not reproduce
the experimental dataf26g, since the growth curves for one
of the nutrient concentrations being kept constant depend
strongly on the concentration of the other nutrient. Therefore,
since low oxygen and large glucose concentrations can result
in similar population dynamics as large oxygen and low glu-
cose concentrationsf26g, both concentrations must enter the
critical parameter. We have also tested the possibility of
concentration-dependent nutrient consumption rates with the
functional form of the Michaelis-Menten-type kinetics:

rnut = rmin +
srmax− rmindCnut

C1/2 + Cnut . s12d

This model, however, uses additional parameters that cannot
be fixed with the present data—even when omittingrmin. In
addition, the values forC1/2 in the literature for oxygen-
dependent proliferationf50g of 0.0083 mM point the direc-
tion that the oxygen consumption rates are always within the
range of saturation, since the local oxygen concentration has
always been larger than 0.04 mM throughout the spheroids.
Consequently, we have assumed constant cellular oxygen
and glucose uptake rates for non-necrotic cells in the present
model. We chose the product of oxygen and glucose concen-
tration to be the limiting factor to sustain cellular viability.
This simple ansatz did suffice to reproduce the experimental
cellular growth curvesssee Fig. 7d. The best fit is achieved
with the parameter set shown in Table I. The corresponding
tumor morphology is addressed in Sec. III B.

Unfortunately, no error bars are given inf26g and the
experimental data scatter considerably even on a logarithmic
scale; see Fig. 7. Apart from the difficulty of establishing a
defined experimental system in biology, this large scatter is
also due to the necessity of destroying the spheroids during
the measurements. Therefore, a whole ensemble of spheroids
had to be measured. Since the monoclonality of these sphe-

FIG. 7. Number of viable cells per spheroid for 0.8 and 16.5 mM glucose concentrations and either 0.07 mM oxygen concentrationsleft
paneld or 0.28 mM oxygen concentrationsright paneld. Experimental datassymbolsd were read off fromf26g, whereas lines correspond to the
computer simulations.
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roids is not ensured, it is nota priori clear whether a single
spheroid might contain several species or whether different
spheroids might belong to different species with individual
growth characteristics. In order to employ a procedure to
minimize deviations between the simulation and experimen-
tal data we defined estimated error bars by calculating the
difference to the artificial Gompertz growth curve,

Nstd = N0 expFa

b
s1 − e−btdG , s13d

which is known to reproduce most growth processes in na-
ture with remarkable accuracyf51g.

Not every hypothesis on nutrient consumption and necro-
sis induction leads to acceptable agreement with experimen-
tal data—indicating the sensitivity of the model. The theo-
retical predictions lie within the scattering region; see Fig. 7.
Qualitatively, one can see that for all the simulations the
initial exponential growth phase soon enters a crossover to a
polynomial growth. In our model this crossover is due to two
distinct mechanisms—contact inhibition and nutrient
depletion—which lead to the similar outcome that after a
certain time dominantly the spheroid surface will contribute
to the proliferation—i.e.,

dN

dt
= aN2/3, s14d

which has the polynomial solutionNstd=N0f1+bt+b2t2/3
+b3t3/27g with b=a /N0

1/3 f27g. Apart from the fact that ne-
crosis is evidently more likely when nutrients are rare, the
mechanisms cannot be clearly distinguished with a glance at
the total growth curves in Fig. 7. Even in the case where both
nutrients are rare, the growth curve can be fitted by the above

equation: The scatter of the data does not allow us to exclude
this possibility. However, given that tumor spheroids saturate
at a certain size, the above model cannot be valid in all
regimes of tumor growth.

Since the mechanism of contact inhibition leads to cells
resting in G0 rather than cells entering necrosis, the differ-
ences can easily be analyzed in the cell cycle distribution. In
Fig. 8 it is evident that for 0.07 mM oxygen and 0.8 mM
glucose concentrationssupper left paneld the nutrient starva-
tion is the dominant limiting factor to cell cycle inhibition,
since there are nearly no cells in the G0 phase and the ma-
jority of cells are necrotic. In the case of nutrient abundance
s0.28 mM oxygen and 16.5 mM glucose, Fig. 8 lower right
paneld, however, the majority of cells reside in the G0 phase
during days 6–23, which is an indication for contact inhibi-
tion being the dominant reason for the crossover, as is also
assumed in other modelsf10,37g. This is also confirmed by
the cross sections of the computer-simulated tumor sphe-
roids; see Fig. 9. Though in the case of nutrient abundance
necrosis sets in much later, the number of necrotic cells rises
at a much stronger slope and it is to be expected that necrosis
will displace the contact inhibition as the major cause for
surface-dominated growth after 25 daysswith overall
roughly 53105 cells involved, the simulations become very
extensive and memory consumingd. Such a displacement of
dominating mechanisms is already visible for some interme-
diate nutrient concentrations. For example, in the case of
0.07 mM oxygen and 16.5 mM glucose concentrations the
number of cells in the G0 phase first rises to reach its maxi-
mum after 10 days and afterwards decays in combination
with a strong rise in necrotic cellssFig. 8, upper right paneld.
Such a behavior is not observed in the regime of large oxy-
gen and low glucose concentrationssFig. 8 lower left paneld,
where necrosis and contact inhibition set in simultaneously

TABLE I. Best fit model parameters that are used in the simulations shown in Figs. 7–9. See text for explanations.

Parameter Value Unit Comment

ECM viscosityhVISC 5310−3 kg/smmsd f10g, estimate

Adhesive frictiongmax 0.1 kg/smm2sd f10g, estimate

Receptor concentrationcrec 1.0 No. fixed

Ligand concentrationclig 1.0 No. fixed

Oxygen diffusivityDeff,ox
tissue 1750.0 mm2/s f48g

Glucose diffusivityDeff,gluc
tissue 105.0 mm2/s f47g

Mitotic phasetsmd s3.6±0.9d3103 s estimate

S/G2 phasetS/G2 s18.0±7.2d3103 s estimate

Shortest cycle timetmin 54.03103 s f26,38,42g, estimate

Mitotic cell radiusRsmd 5.0 mm estimate

Cell elastic modulusE 1.0310−3 MPa f10g, estimate

Cell Poisson numbern 0.5 No. assumption

Adhesive coefficientfad 1.0310−4 mN/mm2 eq. overlap

Necrosis absorption ratesrnecr 2.0310−6 cells/s estimate/fit

Critical cell tensionPcrit 0.6310−3 MPa fit parameter

Oxygen uptakerox 20.0310−18 mol/scell sd fit parameter

Glucose uptakergluc 95.0310−18 mol/scell sd fit parameter

Critical productpoxgluc 0.025 mM2 fit parameter
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and nutrient starvation is the main limiting factor. This is due
to the considerably decreased glucose diffusion coefficient in
tumor tissue, whereas the diffusion coefficient of oxygen is
nearly the same in tissue and water; compare Sec. II E. Con-
sequently, the already low glucose concentration of 0.8 mM
at the boundary drops rapidly when the number of tumor
cells increases, since the new glucose supply diffuses very
slow from the outside.

B. Tumor spheroid morphology

To estimate the quality of a mathematical model one has
to find experimentally accessible parameters. This is espe-
cially difficult when thinking about tissue morphology, since
very often the patterns are hard to quantify in terms of num-
bers. The morphology of three-dimensional tumor spheroids
is rather simple: An inner necrotic core is surrounded by a
layer of quiescent cells, which is in turn surrounded by the

outer layer of proliferating cells. Qualitatively, this morphol-
ogy is well reproduced in the case of initial nutrient abun-
dance; see the upper right panel in Fig. 9. In the case of
nutrient starvation, however, there is virtually no layer of
quiescent cellssFig. 9, upper left paneld, as contact inhibition
is not of importance in this scenariossee Fig. 8, upper left
paneld. This would be different if quiescence is induced by
nutrient limitations: In this case, the necrotic core would al-
ways be surrounded by a layer of quiescent cells. Indeed,
experimental observationsf38g suggest that neither nutrient
depletion nor the related acidicpH induces the cellular qui-
escence. It is evident from Fig. 9 that the size of the layers
depends on the boundary concentrations. In addition, it also
depends on the nutrient consumption rates and diffusivities
of oxygen and glucose within the tumor tissue. The size of
the necrotic core is also very sensitive to the rate at which
necrotic cells are being removed from the simulation.

FIG. 8. Cell cycle distribution for different oxygen and glucose concentrations. Depending on the external nutrient concentrations,
significant differences mark the dominance of different mechanisms to limit the cell cycle. Fits to the regions of exponential growth—marked
by the complete absence of necrotic and quiescent cells—reproduce the shortest observed cycle time within statistical fluctuations. The initial
oscillations in the subpopulations in the cell cycle stem from the fact that the cells divide synchronously at the beginning—their frequency
is the inverse cell cycle time. After each cell division, the daughter cells draw new duration times for the S/G2 phase and the M phase from
a Gaussian distributionscompare Table Id, which leads to a dampening of the oscillations and finally to complete desynchronization of cell
division. The occurrence of contact inhibition or necrosis increases the dampening effect, since the migration through the cell cycle is
impaired. Note that in the case of few nutrients contact inhibition does not play a role, as there are no quiescent cellsstop leftd.
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Note that in the spheroid cross sections it is evident
that—if oxygen and/or glucose are limited—a relatively
small number of cells with constant nutrient uptake rates
suffices to drop the nutrient levels under the critical thresh-
old, thus leading to the onset of necrosis and the absence of
a layer of quiescent cells in the end of the simulations; com-
pare also Fig. 8. This is different for a model with
concentration- or cell-cycle-dependent nutrient uptake rates.
In the first case the absolute value of the nutrient concentra-
tion gradients would be decreased, thus giving rise to a
broader viable layer which—in turn—could allow for the
existence of a quiescent layer. In the second case the inter-
mediate emergence of cellular quiescencessee Fig. 8d would
also decrease the absolute value of the nutrient concentration
gradient towards the necrotic core, which would prolong and
eventually stabilize the existence of a quiescent layer also for
nutrient-depleted configurations. Therefore, in order to dis-
tinguish between nutrient uptake models, the tumor spheroid
morphology is an important criterion, whereas the simple
total growth curve is not sufficient to make quantitative pre-
dictions about the mechanisms at work.

Interestingly, the spheroids in Fig. 9 are fairly round, es-
pecially for the case where nutrients are provided in abun-
dance. This is due to the stochastic nature of the mitotic
direction which forces initial differences to average out after
some time—which can easily be verified by restarting the
computer code with similar parameters but different seed
values for the random number generatorsdata not shownd.
This is in agreement with many spheroids observed in the
experiment f26g and in other computer simulationsf37g.
However, the spheroids are less spherical for extreme nutri-
ent depletion, since, first, the small cell number yields less
stochastic events that contribute to the averaging and, sec-
ond, the emergence of localized holes in the necrotic core is
not counterbalanced by a strong mainly isotropic prolifera-
tive pressure from the proliferating rim—as is the case for

large nutrient concentrations. The sometimes observed devia-
tions from the spherical formf26g can also have additional
reasons: The spheroids might be heteroclonal while all cells
in our simulation are assumed to be monoclonal. If a spher-
oid does not develop from a single but two genetically dif-
fering cells, these cells might exhibit different growth char-
acteristics.

C. Parameter dependence

The growth curves shown in Fig. 7 have been calculated
using the—comparably many—parameters in Table I. How-
ever, since mainly deterministic and rather physically moti-
vated interactions are assumed, more parameters than in par-
tial differential equation or cellular automaton models can be
accessed by independent experiments and do not need to be
varied as fit parameters. Some of these parameters deserve
special attention: The elastic parameters of EMT6/Ro tumor
cells might differ from those in our simulation, where incom-
pressibility has been assumed—see Table I. Assuming re-
duced Poisson ratiosn<0.3 and elasticities ofE<750 Pa
f10,50g, one may obtain deviations in the elastic forces in Eq.
s1d in the range of up to 50%. However, even with these
different elastic constants the growth characteristics do not
change significantly: This is due to the fact that the cellular
tensions relax on a much shorter time scale than the cell
cycle time. An initial cycle time of 17 h has been obtained in
f26g using a Gompertz fit to the spheroid volume. This fit had
been applied to already existing small spheroids that may
exhibit growth retardation effects. For cells that had sepa-
rated at the spheroid boundary, a cell cycle time of only 13 h
f42g has been observed. Therefore—and in order to repro-
duce the slopes correctly—we have used a slightly decreased
shortest possible cycle time. The cell tension defined here is
simply a sum over all normal tensions with the next neigh-
bors. The value that we have obtained as fit parameter is

FIG. 9. Cross section of computer-simulated tumor spheroids after 23 days of simulation time. The first row shows the cellular status
snecrotic cells painted black, quiescent cells in dark gray, cells in the cell cycle in lighter shades of grayd, whereas the second row visualizes
the cellular tensionsfree cells painted black, cells under strong pressure in light grayd. Nutrient concentrations from left to right are given by
0.07 mM oxygen and 0.8 mM glucose, 0.07 mM oxygen and 16.5 mM glucose, 0.28 mM oxygen and 0.8 mM glucose, and 0.28 mM
oxygen and 16.5 mM glucose.
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about 6 times as large as the critical cellular compression
used as a criterion for contact inhibition in similar simula-
tions s90 Pa inf10gd. In part, this may be due to the Voronoi
surface correction—surfaces tend to be smaller than sphere
surfaces—which leads to generally larger normal tensions.
The remaining discrepancy should be attributed to the fact
that we use a different cell line and the inherent model dif-
ferences. The removal rater of necrotic cells did not have a
considerable impact on the macroscopic number of viable
cells and the spheroid size. However, it can also be seen in
Fig. 9 that due to the removal of necrotic cells, holes emerge.
Then the mechanical coupling from the necrotic tumor core
towards the boundary will be disrupted. Therefore, for the
used elastic and adhesive parameters, the parameterr mainly
controls the number of necrotic holes in the center. Note that
this is different, however, in a scenario with considerably
increased adhesion, where the mechanical coupling is not
disrupted and the rate constantr does have an influence on
the spheroid size and thereby on the overall cell number.

In accordance with the assumption of contact inhibition
being the dominant cause for the crossover from exponential
to polynomial growth in the case of nutrient abundance, the
initial phases of the theoretical growth curve for 0.28 mM
oxygen and 16.5 mM are dominantly dependent on the criti-
cal cell tension, whereas the other growth curves—especially
for nutrient depletion—strongly depend on the nutrient up-
take rates and the necrotic parameter. Generally, the late
stages of spheroid growth depend critically on the nutrient-
related parameters. The resulting parameters for nutrient up-
take rates are well within the range observed in the literature
f26,38,39,52,53g, though some considerable variances even
within the literature exist. Apart from the fact that mostly
different cell lines are analyzed, the additional problem ex-
ists that the values in the literature are usually volume-
related uptake rates that have been fitted to experimental
data. Consequently, the extracted cellular uptake rates de-
pend on the corresponding cellular packing density of these
systems. It must be kept in mind that these rates represent
average values over the whole ensemble of cells present in
the spheroid. For example, quiescent cells could have a con-
siderably decreased nutrient uptake rate. In addition, there is
evidence that glucose uptake rates can be related to the local
concentration of available oxygenf38g. The present quality
of the data, however, does not allow us to discriminate be-
tween more sophisticated models

Note that in the overdamped approximation of Eq.s6d the
solution is calculated as a ratio of combined elastic and ad-
hesive forces to a friction parameter, which is largely influ-
enced by cell-cell adhesion. Therefore, the model will not be
very sensitive to the specific adhesion coupling constants and
the adhesion-determined friction, as rather their ratio is
mainly influencing the model behavior as long as elastic
forces are small.

D. Saturation of growth curves

A complete saturation of the cell number or spheroid
size—as suspected byf26g and othersf25g—cannot be repro-
duced in the computer simulations with the parameters in

Table I. The large scatter of the data in the case of nutrient
depletionsFig. 7, left paneld does not exhibit a clear satura-
tion within 25 days, which is not reached in the other con-
figurations anyway. For the explanation of a growth satura-
tion the nature of the additional mechanism remains
controversial. For example, inf25g an effective movement of
cells towards the necrotic core has been observed, leading to
the assumption of a chemotactic signal secreted by necrotic
cells. The corresponding computer simulations inf8g did
lead to saturation. Since it is somewhat arbitrary to assume
that tumor cells follow a necrotic signal, we also tested a
simpler hypothesis:

In Fig. 9 macroscopic holes are visible within the necrotic
core—created by the removal of necrotic cells from the
simulation. Once such a hole is established, it even tends to
grow, since the intercellular adhesion is of very short range.
fRecall that Eq.s2d depends on the contact surface.g We have
found that an increase of adhesive normal forces tofad

=0.0003mN/mm2 suffices to close the visible holes
completely—thereby inevitably coupling the proliferating
ring to the necrotic core which finally leads to apparent
growth saturation; compare Fig. 10. Note, however, that in
the presence of stochastic forces, complete saturationslasting
infinitely longd can never be observed, since already the sel-
dom case of cells leaving the spheroid will lead to further
colonies that might recombine. Consequently, the volume
loss generated by removing necrotic cells with a certain rate
must be balanced by a movement of proliferating or quies-
cent cells from the outer layers into the necrotic core. In
addition, the outward component of the proliferative pressure
on the outer layer is counterbalanced by the increased cellu-
lar adhesion as well. For such a system, a growth saturation
is inevitable: As in the late stages of spheroid growth the
cellular birth rate can be assumed to be proportional to the
spheroid surface,Rbirth<aN2/3, and the rate of cell removal
is proportional to the number of necrotic cells residing in the
center, the total cell number can be described by

dN

dt
= aN2/3std − bfNstd − gN2/3stdg, s15d

with a ,b ,g being positive constants. The above equation
resembles the growth law of Bertalanffyf51g. The solution
of this equation reaches the steady stateN`=sa /b+gd3,
which is stable forb.0. Therefore, in this regime nutrient
depletion is the dominant factor limiting tumor spheroid
growth.

We conclude that growth saturation of both cell number
and spheroid radius in off-lattice computer simulations can
be reached by assuming increased intercellular adhesion
forces. In that case viable cells move towards the necrotic
core sdata not shownd. The assumption of some diffusing
signal as inf8g is not necessary. Interestingly, during the
period of saturation, deviations from the spherical shape can
emerge: The position of unstable intermediate holes within
the necrotic core is randomly distributed and gives rise to
macroscopic deviations from spherical shape on the spheroid
surface. Therefore, an irregular spheroid shape can also be
explained by individual durations of the necrotic process.
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Note that another candidate for a cell loss mechanism is the
shedding of cells at the spheroid surfacef42,54g. All these
mechanisms could be combined with an involvement of
metabolic waste products in the induction of necrosis.

IV. SUMMARY

We have demonstrated that the Voronoi-Delaunay hybrid
model can very well be used to establish agent-based cell-
tissue simulations. The Voronoi-Delaunay approach provides
some advantages: First, compared to the description of cells
by deformable spheres, the Voronoi tessellation provides an
improved estimate of contact surfaces within dense tissues.
The present model combines the advantages of both model
concepts. Second, the weighted Delaunay triangulation is an
efficient method to determine neighborship topologies for
differently sized spherelike objects. In addition, it can effi-
ciently be updated in the case of moving objects. The model
is very rich in features and therefore allows many compari-
sons with the experiments. It can easily be combined with
established models on cellular adhesion and elasticity that
rely on direct experimental observables. Therefore it allows
some of its parameters to be fixed by independent experi-
ments. The parameters which had to be determined with re-
spect to macroscopic quantities represent existing physical
quantities. Since such quantities can be falsified in future
experiments, the model provides predictive power to a
greater extent than differential equation or cellular automa-
ton approaches.

Unlike previous modelsf8,37,49g—which only consid-
ered the influence of one nutrient on the dynamics of three-
dimensional multicellular tumor spheroids—we were able to
reproduce the experimental growth curves with a single pa-
rameter set by considering the spatiotemporal dynamics of

both the oxygen and glucose concentrations simultaneously.
A saturation of growth could be obtained by increasing in-
tercellular adhesive forces threefold.

On the one hand, the typical spheroid morphology is re-
produced qualitatively very well. On the other hand, a quan-
titative reproduction not only of cell population growth
curves but also of spheroid morphology could allow for a
more detailed analysis of nutrient consumption models: For a
different cell line an oxygen:glucose uptake ratio of about
1:1 has been foundf43g. In contrast, our computer simula-
tions point to the scenario that the oxygen consumption rates
are much smallersabout 1:5d than the glucose consumption
ratessTable Id, though the values are within the ranges of
uptake rates in the literature if considered separately. This
discrepancy may be due to several reasons. First, there is
strong experimental evidence that the ratio of oxygen and
glucose uptake in the case of EMT6/Ro cells considerably
differs even from the ratio of 1:1. For example, inf39g a ratio
of 1:3.9 is suggested. Second, the effective diffusivities
within tissue for oxygen and glucose obtained fromf48,47g
might not be correct—this would lead to different currents of
oxygen and glucose within the spheroid. Third, the model
assumptions of roughly constant nutrient uptake rates and the
product of both concentrations being the critical parameter
for necrosis might not be correct.

We have seen that the quantitative analysis of the overall
growth curve can in principle be used to determine unknown
parameters. The current experimental data, however, exhibit
too much scatter to determine parameters with accuracy;
therefore, a combined experimental and theoretical investi-
gation of multicellular tumor spheroids of a single well-
defined cell line is of urgent interest.

The presented model is especially suitable for systems
with a comparably large number of cells. In addition, it sup-

FIG. 10. After assuming an increased adhesive coupling the emergence of holes within the necrotic core is completely inhibited. In
addition, the cells have been displaced randomly by a Gaussian distribution with widthDxi =Î2DDt at every time step. A steady-state flow
equilibrium is established, leading to approximate growth saturation of the spheroidsleftd in the observed time range. No further mechanisms
need to be assumed. In addition, the fast closure of holes in the necrotic core can lead to deviations from the spherical symmetrysrightd. Cells
in the cell cycle are marked in light grey, quiescent cells in grey, and necrotic cells are depicted by dark grey.
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ports different cell types as well. The cell shape, however, is
restricted to convex cells. This makes it suitable to model
rather dense cell tissues such as, e.g., epithelia where one can
investigate the roles of differential adhesion, elastic interac-
tions, and active cellular migration in tissue flow equilib-
rium. Further applications of the Voronoi-Delaunay method
will therefore include the modeling of epithelia, bone forma-
tion, and biofilms. In addition, the weighted Delaunay trian-
gulation is a suitable tool for the modeling of boundary
conditions—e.g., in froths.
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APPENDIX

Program architecture

The programming languageC11 supports object-
oriented programming and thus enables us to identify indi-
vidual cells with instantiations of objects. These objects are
stored in a list to allow for efficient deletionsapoptosis or
necrosisd and insertionsproliferationd. We had already imple-
mented a weighted kinetic and dynamic Delaunay triangula-
tion in three dimensionsf15g which provides—once
calculated—constant average access to the next neighbors
for differently sized spheres. This is achieved by using point-
ers on cells as the objects in the weighted Delaunay triangu-
lation and storing the triangulation vertices in the cell ob-
jects. The Voronoi tessellation—which is the geometric dual
of the Delaunay triangulation—provides the three-
dimensional contact surface corrections.

If the spatial steps are not too large, the neighborship can
be updated over time with an on average linear effort; i.e.,
the time necessary to update the neighborship relations after
movement scales linearly with the number of cells. This limi-
tation can be safely ensured by an adaptive step-size algo-
rithm in the numerical solution of Eq.s9d. In our simulations,
the average time step size was around 30 s, thus leading to
roughly 60 000 time steps for 23 days of simulation time. At
every time step the list of cells is iterated and for every cell
all new variables are calculated. Afterwards the cellular pa-
rameters are synchronized. Note that discontinuous events
such as cell proliferation and cell death correspond to inser-
tion or deletion of just one cell in the list and become valid in
the next time step. The Delaunay triangulation and the diffu-
sion grid are then updated with the cellular displacements
and radius changes or nutrient consumption rates, respec-
tively. Therefore, all coupled equations are solved synchro-
nously by storing the solution of every equation until the
solutions of all equations have been calculated.

Cellular kinetics

In the overdamped approximation, the cellular equation of
motion s9d is just a first-order differential equation that can

easily be solved numerically. There are a variety of estab-
lished numerical algorithms to choose from and we decided
to stick with a simple forward-time discretization—which is
just a first-order method. The first reason for this is that the
uncertainties arising from the cell model presumably exceed
the numerical errors by orders of magnitude. In addition,
higher-order methods such as, e.g., the Runge-Kutta method
require intermediate evaluations of the forces. In our model,
however, this would necessitate intermediate refinements of
the triangulation, thus considerably increasing the numerical
complexity. Multivalue predictor-corrector methods are also
not suitable, since in the present model the intercellular
forces are not continuous, especially during mitosis. Keeping
these arguments in mind one still has to guarantee numerical
stability of the results. This can be achieved by using an
adaptive time step size. In order to avoid slope calculations
we chose a small time step if the spatial step sizes exceeded
a critical value, which was always chosen much smaller than
the cellular radius.

Reaction-diffusion equation

Three-dimensional reaction-diffusion equations often con-
stitute a significant challenge for present computational hard-
ware since for a reasonable resolution a large number of
lattice points is needed. In addition, not every algorithm is
numerically stable. For example, the normalADI algorithm is
unconditionally stable in two dimensions but not in three
f55g. Though there exist modifiedADI algorithms that are
unconditionally stable in three dimensions as well, the com-
plete solution of the reaction diffusion systems11d is quite
intensive in three dimensions—unless one is restricted to low
resolutions.

If the diffusion coefficients and the considered time steps
are comparably large, the steady-state approximation]u/]t
<0 can be applied and by neglecting the time dependences
Eq. s11d reduces to a Helmholtz problem

f¹W Dsxdg · f¹W usxdg + Dsxd¹W 2usxd = rsxd. sA1d

The steady-state approximation has already been applied in,
e.g., f49g. Equation sA1d can be solved numerically with
comparably low computational effort and—more
importantly—with numerically stable methods. Since the dif-
fusion coefficients of both oxygen and glucose are very large
in comparison with the cellular movements, we have decided
to employ the steady-state approximation when solving the
dynamics of the nutrients. The methods to solve Eq.sA1d
differ significantly in their convergence time. A simple relax-
ation method such as the Jacobi or Gauss-Seidel methodf55g
does not converge fast enough. In the case of spatially con-
stant diffusion coefficients the fast Fourier transform can be
employed. Tumor tissue, however, does have a different dif-
fusivity than agarf43,56g which made us favor a V-cycle-
multigrid algorithm that uses Gauss-Seidel relaxationf57g.

Since the discretization of Eqs.s11d andsA1d is done on a
simple 64364364 cubic lattice with a lattice constant of
15.625mm—which is larger than the cellular diameter—and
as the cell positions are arbitrary in our off-lattice model, we
do use a trilinear interpolation to determine the local concen-
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tration from the concentrations on the eight closest lattice
nodes,

fsx,y,zd = f000s1 − xds1 − yds1 − zd + f100xs1 − yds1 − zd

+ f010s1 − xdys1 − zd + f001s1 − xds1 − ydz

+ f110xys1 − zd + f101xs1 − ydz+ f011s1 − xdyz

+ f111xyz, sA2d

where f ijk represent the values of the functionf on the cor-
ners of a cube of length 1. The reaction rates created by the
cells are handled similarly by distributing them on the closest
lattice nodes. The local diffusion coefficients can be set by
the tumor cells according to their spatial position. This ap-
proximates the correct boundary conditions. The size of the
diffusion grid was with 10003 mm3 always completely en-
closing the tumor spheroids and by direct observation of the
nutrient isosurfaces it was made sure that the rectangular
boundary conditions did not influence the spheroidal concen-
tration isosurfaces in the vicinity of the tumor spheroid.

Fitting experimental data

In order to minimize the difference between theoretical
and experimental observables we performed roughly 150
computer simulations over a wide range of parameters until
the visual agreement with the experiment was satisfactory.
Afterwards we started Powells methodf55g with several per-
turbations around this optimal parameter set by minimizing
the squared differences of the logarithms of theoretical and
experimental growth curves—i.e.,

x2 = o
i:exp

o
j :meas

1

si j
2 hln Nij

exp− ln Nij
simfp1,p2, . . . gj2, sA3d

where thepa are the parameters that have been varied and
the errors of the experimental data pointssi j have been esti-
mated by calculating the difference onto a Gompertz growth
curve. Note that it is a purely geometric and therefore deter-
ministic algorithm, which opens the possibility that it will
terminate within a local minimum. In order to decrease the
probability of terminating within a local minimum, several
runs should be performed. However, the changes of param-
eters are negligible, since due to the strong scatter of the
data, the visual data fit is satisfactory already.
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