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Multicellular tumor spheroid in an off-lattice Voronoi-Delaunay cell model
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We study multicellular tumor spheroids by introducing a new three-dimensional agent-based Voronoi-
Delaunay hybrid model. In this model, the cell shape varies from spherical in thin solution to convex polyhe-
dral in dense tissues. The next neighbors of the cells are provided by a weighted Delaunay triangulation with
on average linear computational complexity. The cellular interactions include direct elastic forces and cell-cell
as well as cell-matrix adhesion. The spatiotemporal distribution of two nutrients—oxygen and glucose—is
described by reaction-diffusion equations. Viable cells consume the nutrients, which are converted into biom-
ass by increasing the cell size during the ihase. We test hypotheses on the functional dependence of the
uptake rates and use computer simulations to find suitable mechanisms for the induction of necrosis. This is
done by comparing the outcome with experimental growth curves, where the best fit leads to an unexpected
ratio of oxygen and glucose uptake rates. The model relies on physical quantities and can easily be generalized
towards tissues involving different cell types. In addition, it provides many features that can be directly
compared with the experiment.
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I. INTRODUCTION fectively with these approaches. Also, the discrete and indi-
vidual nature of cells is completely neglected.

The spatiotemporal dynamics of individual cells often  The discrete nature can be taken into account by deriving
leads to the emergence of fascinating complex patterns imaster equations for the population number on every volume
cellular tissues. For example, during embryogenesis it is hyelement [2]. By mapping these master equations to a
pothesized that these complex patterns develop with the aifichrédinger equation one is able to identify a Hamilton op-
of mechanisms such as diffusing messengers and cell-cedrator that allows a physicist to apply the mathematical
contact. Sometimes these patterns can be described very wétimework of quantum field theory to systems such as cell
with a simple model. Such mathematical models can help téissues. For example, in the simple case of Lotka-Volterra
test hypotheses im silico experiments, thereby circumvent- equationg 1] this method leads to mean-field equations that
ing real experiments which are very often expensive andesgmble the Lotka-Volterra equati_ons. The renormalizeq nu-
time consuming. However, since the local nature of cell-celimerical result43], however, may disagree qualitatively with
interactions is not precisely known, one is often restricted tghe mean-field approximations. Consequently, the discrete
compare the global outcome following from different hy- nature of cells may not always be neglected. Still, the above
potheses with experimental data. Unfortunately, there are-duantization assumes all agents to be identical and indistin-
unlike in theoretical physics—no established first-principle guishable and inevitably neglects the individuality of cells.
theories in cell tissue modeling which explains that there ar herefore, features such as cell shape and differences in cell

a variety of models on the market, which can be classified a ize or internal properties are not considered in this class of

odels.
fO”OWS- : . This is different in the third class of agent-based models,
First, there is a class of models where one derives con,

. . ) here cells are represented by individually interacting ob-
tinuum equations for the cell populations. In analogy to:

icle phvsi I h Linf : ects. Since now every single cell must be included in the
many-particle physics one replaces the actual Information o, 1\, jier simulations, the computational intensity increases
every cell by a cellular density. Consequently, the equationg\ijeraply. This, however, opens often the possibility to
of mation can be simplified considerably to a differential phoose the interaction rules intuitively from existing obser-
equation describing the spatiotemporal dynamics of a cek/

: . ations. These models are usually restricted to a certain cell
type. In practice these equations do very often have the typg, ne “\which enables one to subclassify them further: In
of reaction-diffusion equationgl]. The volume integral of

. ) . lattice-based modelf4,5] the cellular shape is usually al-
such equations results in the global dynamics of a Who'?eady defined by the shape of the elementary cell of the
population(e.g., predator-prey modejsvhere only the tem-

L : lattice, such as, e.g., cubi6] or hexagonal7,8]. Off-lattice
poral development of the total population is monitored. Note d bi6] gonal7 8]

h h lular i . v b deled fmodels are usually restricted to one special cell form and
owever, that cellular interactions can only be modeled ety qjger slight perturbatior(g.g., deformable sphergs,10|

or deformable ellipsoidgl1-13). In other off-lattice models
the geometrical Voronoi tessellatiqii4,15 is used, which
*Electronic address: schaller@theory.phy.tu-dresden.de allows for more variations in cell shape and size. In addition,
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it comes very close to the polyhedral shape observed forithms. Our model uses the weighted Delaunay triangulation
some cell typeg16]. An important advantage of off-lattice which provides the correct neighborship topology for a set of
models is that perturbations from the inert cell shape campheres with different radii with on average constant access
give rise to physically well-defined cellular interaction [15]. In addition, the model is dominantly deterministic

forces, whereas in lattice-based models one is usually forceghich abolishes the necessity to test irrelevant parts of the
to introduce effective interaction rules which makes it diffi- phase space.

cult to relate the model parameters to experimentally acces- ynjike in two dimensions, where tumor cells in vitro

sible quantities. setups will proliferate without limitation, there exist growth

Since cel}[.bsh%ﬁ)e and Lungtion arek_usdualrlly closgl_%/f COMNfimitations on tumor cell populations forming solid spheroi-
nected(e.g., fibroblasts in the human skin do have a di erentyal cell aggregates in three dimensig2§]. This limitation

shape than melanocytes or keratlnoc)/,t_ethere are Some_ growth is presumably due to both contact inhibition—
models that try to reproduce any possible cell shape. For

. . which is also active in two dimensiorjd0}—and nutrient
example, in the extended Potts moftef—2q one has spins depletion in the interior of the spheroid. Initially, the cell

on several lattice nodes describing a single cell. The dynam- . .
g 9 y umber grows exponentially and enters a polynomial growth

ics of these spins is calculated by minimizing an energ h ; q . | all 4 f
functional. The often-used Metropolis algorithm tests severapPase after some days in culture. Finally, a saturation o

spin flips for a decrease of the energy. A Metropolis time stef"0Wth is observed for many spheroid syst¢@8. The final
is defined as having performed as many checks for spin flip§tages of spheroid growth exhibit a typical pattern in the
as there are spins. The parameters in the energy function&f0Ss sections: An internal necrotic core is surrounded by a
have to be determined heuristically as it is difficult to maplayer of quiescent cells—which do not proliferate—and on
them to experimentally accessible microscopic propertieshe outside one has a layer of proliferating c¢23]. The
For example, volume conservation is usually handled by dinal stage depends critically on the supply with nutrients
penalty term which acts equally strong for both compressior$uch as oxygen and glucose. The model we have imple-
and elongation. The usual practice of relating the Montegmented enables us to mod@(10°) cells which is in agree-
Carlo time Step to physica| time is not unique: There arénent with cell numbers observed in multicellular tumor
cellular proliferation times, cellular compression relaxationspheroid systemg26]. We will demonstrate that the growth
times, etc. Finally, the enormous number of spins required t§Urves measured ir26] for different nutrient concentrations
appropriately describe a single cell leads to an enormougan be reproduced using a single parameter set and simple
computational complexity that restricts the model to small@ssumptions for cellular interactions.
cell numbers. This problem is circumvented in force-based
models. For example, if21] the relation of cell shape and
cell motility has been investigated in a model that represents
cells as a collection of cell fragments on a lattice. Other In our model we assume cells to be deformable spheres
models describe cell shape on a two-dimensional hypersuwith dynamic radii, which is motivated by the experimental
face by a changing number of polygonal nodeg,23, observation that cells in a solution tend to be spherical—
which is also computationally expensive. [[P4], the initial ~ presumably in order to minimize their surface energy. Con-
configuration of the nodes bordering the polyhedral cells issequently, we treat all deviations from this spherical form as
deduced from a Voronoi tessellation of the cell centersperturbations from the inert cellular shape.
whereas the Voronoi concept is discarded during the dynam- The model is agent basg@ometimes also called indi-
ics, since every border node has its own dynamics. Genewridual basey i.e., every biological cell is represented by an
ally, the latter models always need a large number of generdhdividual object. These objects interact locally with their
coordinates to define the shape or status of a cell and amext neighbors(those that follow from the weighted De-
therefore restricted to a relatively small number of cells—launay triangulationand with a reaction-diffusion grigfor
even at present computational power. nutrients or growth signals Each cell is characterized by
Balancing these reasons in the context of the aimed deseveral individual parameters such as position, a radius, the
scription ofin vitro tumor growth data we decided to use antype corresponding to biological classifications, the status
off-lattice agent-based model, where one has the advantagposition in the cell cyclg cellular tension, receptor and
of allowing continuous cell positions. Therefore the extentligand concentrations on the cell membrane, an internal
by which cellular interactions have to be replaced by effecclock, and cell-type-specific coupling constants for elastic
tive automaton rules is much smaller than in correspondingnd adhesive interactions. Since we assume the inert cell
cellular automat48]. In addition, the model parameters can shape to be spherical, the power-weighted Delaunay triangu-
be directly measured in independent experiments. The enolation [15] is a perfect tool to determine the neighborship
mous computational intensity common to most existing off-topology.
lattice models is due to two effects: First, some off-lattice
models[5] use effective stochastic interaction rules, which
require stochastic solution methods such as the Metropolis
algorithm. The infinite number of possibilities in a continu-  Following a model of Hert428,29—which has already
ous model, however, requires a large part of the phase spabeen used in the framework of cell tissyé€,30—the ab-
to be tested. Second, the determination of the neighborshigolute value of the elastic force between two spheres with
topology for local interactions requires sophisticated algo+adii R andR; can, for small deformations, be described as

Il. CELL MODEL

A. Elastic and adhesive cell-cell interactions
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FIG. 1. Two-dimensional illustration of interpenetrating spheres
with maximum overlagh; and sphere contact surfagg (marked
bold). In reality, the spheres will deform and generate a repulsive
force.

FIG. 2. Within dense tissues, many sphere overlaps can occur. If
el hﬁ’z(t) in this case the Voronoi contact surfa@earked with a bold lingis
Fii (t)= 3< 1-12 1-12 1 1’ D smaller than the sphere contact surface, it will provide a more real-
- ' ) \/ + istic estimate of the cellular contact surfaces.
Rt Rt

+ |

4\ E E
whereE;; and,; represent the elasticities and Poisson ratios Intercellular adhesion in a tissue is mediated by receptor
of the spheres, respectively. The quantify=max0,R;+R; and ligand molecules that are distributed on the cell mem-
~|r;—=r,[} represents the maximum overlap the spheres woul@ranes. For simplicity, we neglect a possible dynamical clus-
have if they would not deform but interpenetrate each othert€ing of adhesion molecules and assume them to be—on
see Fig. 1. In principle the repulsive force resulting from Eq.average—uniformly distributed. The resulting average adhe-
(1) could be overturned since it does not diverge for largeS\Ve forces between two cells should then scale with their
overlaps. However, additional mechanisfeentact inhibi-  contact area; (see also, e.g[13]) and can be estimated as
tion) ensure that in practice the cells will respect a minimum
distgnpe from each other. In addition, the .overlaps_ lead to a Fﬁd: Aijfadl(c{ecc}ig + c!igc}“), 2)
deviation of the actual cell voluméset intersection of 2
Voronoi and sphere volumdrom the intrinsic(targe} cell ) i
volume. Therefore the cell volume is only approximatelyWhere the receptor and ligand concentratigfi§" are as-
conserved within this approach. sumed to be normalizedi.e., 0<c/®¥9<ceelomasy)

In reality this model might not be adequate for cells: First,without loss of ggznerallty, since the—globally valid—
the mechanics of the cytoskeleton is not well representegoupling constanf® can always be rescaled by absorbing
which might yield other than purely elastic responésse, the maximum possible den.smes of receptqrs and ligands.
e.g.,[11,31)). Second, Eq(1) represents only a first-order Therefore the receptor and ligand concentrations do not have
approximation which is valid for small virtual overlajg ~ units but just represent the 'bir;dir!g strength relative to a
<min{R;,R;} only. As cellular mechanics is known to be not maximum binding absorbed iff® within this model. The
only viscoelastic but also viscoplasfid2], a more exact ap- contact surface ared; can be estimated using the contact

proach would follow[12,13 by replacing cells by equivalent Surface of two overlapping spher&§”"*"®—see Fig. 1.

networks containing elastic and visco(sternal cell fric- Two issues need to be discussed in this respect: First, the
tion) elements. However, the parameters required for such Hertz model predicts a contact surface &f™=(h;
model should either be measured for every cell type indepent )RR/ (R +R;), which is in the physiologic regime of pa-
dently or they should be derived from a microscopic modelrameters considerably smaller than the spherical contact sur-
of the cytoskeleton such as, e.g., tensegrity structurefaice AP"*'=m(hR+hR~-h?/2-h?/2). However, the
[33,34], which is beyond the scope of this article. Conse-spherical contact surfaces describe real tissue much more
guently, internal cell friction is neglected. In addition, the realistically than the Hertz contact surface, which should
Hertz model is only valid for two-body contacts, since for anconsequently rather be termed effective in the context of cel-
exact treatment prestress and the difficult elastic problem dfilar interactions. In the used physiologic regime of overlaps
multiple overlaps will have to be considered as well. Therethe two contact surfaces have the same scaling in the first
fore, especially in the case of multiple sphere overlagis  order. Therefore, a rescaling of the effective adhesive con-
Fig. 2 the Hertz model will underestimate the actual repul-stant {3 will replace the spherical contact surface by the
sion. Hertz contact surface. Second, in dense tissues the spherical

However, in this article we would like to restrict ourselves contact surface is not a valid description anymore, since the
to the simple purely elastic modél), since it allows the contact surfaces of many spheres might overlap as in Fig. 2,
independently measurable experimental quantitjesnd E; inferring double counting of surfaces and thus overestimat-
to be directly included. ing of the total cell surface.

]
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tween the two estimates. The underestimation of the repul-
sive forces in dense tissues within the Hertz model is in parts
compensated for by using the Voronoi-based decreased adhe-
sive forces, thereby leading to an increased net repulsion.
Depending on the local cellular deformations the difference
between the spherical and Voronoi contact surfaces can be in
the range of 30% within dense tissues.

Note that Eqs(1) and(2) allow for different cell types by
introducing varying radii, elastic moduli, and receptor and
ligand concentrations. All forces act in the direction of the
normals to the next neighbors and on the center of the
spheres. The total force on the celis then determined by
performing a sum over the next neighbcﬁfsﬁjeNN@(Fﬁd
—Fﬁ')-nij and in addition we record the sum of the normal
tensions,

p= > Pl (5)
jenni)  Aj
wheren;; denotes the unit vector pointing from cefto cell
j- The list of next neighbors is efficiently provided by the
Delaunay triangulation. Once a force has been calculated, the
corresponding spatial step can be computed from the equa-

FIG. 3. Visualization of two intersecting circléspheresand  tions of motion[11,12],

their corresponding Voronoi domains in twhree dimensions.

The position and orientation of the Voronoi contact lifane mir (1) = F{(t) - > Y Pef(t) - > 7{]‘B[i’iﬂ(t) - 'er(t)],
coincides with the circléspherg intersection. The Voronoi surfaces B B i
are also determined by the positions of other ogltst shown herg (6)
The weighted Voronoi tessellatioft5,35 of a set of ‘Where the upper Greek indicess e {0,1,2 denote the co-
B ordinates and the lower Latin indicesj €{0,1,... N-
spheredr,R}, di d the | Latin indicesj € {0,1 N-1}
the index of the cell under consideration. The adhesive or
Vi(t) = {x e R:[x - () ]> - RA(t) < [x - rj(t)]z— Rjz(t) Oj repulsive forces as well as possible random forces onicell

. are contained in the ter?, whereas the coefficientg*”

7 i}, S and yi‘j’ﬁ represent cell-medium and cell-cell friction, respec-
divides space into Voronoi regions—convex polyhedra thatively. Acommon isotropic choice for cell-medium friction is
may in some sense be associated with the space occupied #ig normal Stokes relation
cell i (see Figs. 2 and)3This correspondence, however, is aBisc_ 5
deceptive, as one can easily show that 8j.leads to infi- % = 6m RS, @)
nitely large intercellular contact surfaces at the boundary ofyhich describes the friction of a sphere with radRisvithin
the convex hull of the pointfr;}. In addition, in the case of 4 medium of viscosityy.

a IOW Ce||u|al’ density the Surfaces and V0|umeS deﬁned by Most tissue Simu'ations use the Overdamped approxima_
the purely geometric approadB) will evidently overshoot tjgn mi®(t)~0 Oi, a,t, which is an adequate approximation
the actual cellular contact surfaces and volumes by orders gf; cell movement in mediurfi36], since the estimated Rey-
magnitude. On the other hand, Voronoi contact surfaces havgg|ds numbers are extremely smilll]. Evidently, since ad-
been shown to approximate the cell shape in tissues remarkitional adhesive bindings are at work, cellular movement in
ably well—at least in two-dimensional cross secti¢@s]. a tissue is even more dampfg7]. In the overdamped ap-
Therefore, in order to have a contact surface estimate Va”fﬂroximation, Eq(6) reduces to al¥x 3N linear system that
for different modeling enwro_nments we use a combination ofig sparsely populated and therefore can in principle be solved
the two approaches by setting using an iterative methdd.1]. However, the large number of
A,; = min{AsPherepVoronoh, @) cells involved in larger multicellular tumor spheroids would
. make this approach inefficient—in terms of both storage and
In order to use the Voronoi surface, cells do not only have texecution time—and limits the simulations@10°) cells. It
be in contact, but the Voronoi contact surface must bas also not clear whether this intercellular drag force term
smaller than the spherical contact surface, which can be thsignificantly contributes. We have omitted this term and
case for multiple cell contacts; compare Fig. 2. This combi-compensate for this by a modified friction model which re-
nation leads to upper bounds of intercellular contact surfacespects that the movement of bound cells is considerably in-
on tissue boundaries and preserves the Voronoi surfacdsbited. In addition, one should keep in mind that within
within dense tissues by yielding a continuous transition bedense tissues many intercellular contacts are mediated by the
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T>1"°? T>1™9
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FIG. 4. The extent to which adhesive bonds contribute to fric- P<P™

tion depends on the direction of movement and on the contact sur-

faces. If the total force and normal vector are parallel, the corre-  FIG. 5. During cell division, cells reside in the M phase #¥P.

sponding contact surface will not contribute at all to the friction Afterwards, the cell volume increases at a constant rate in the G

coefficient in Eq.(8), whereas the contribution will be strongest phase, until the premitotic radil®™ has been reached. At the end

with the force and normal vector being antiparallel. of the G, phase, the cell can either continue the cell cycle or enter
the & phase, if the normal tensioR; exceeds a threshold. The

extracellular matrixwith zero velocity. Such a friction term  S/G, phase lasts for a time¥, after which mitosis is determin-

will rather contribute to the diagonal part of the dampeningiStica”y initiated. The necrotic state can be entered at all times in

matrix. Therefore, we chose to approximate the term with théne cell cycle.

velocity differences by increasing the isotropic cell-medium

friction coefficient by another term—i.e.; = fVisc During the G phase, the cell volume grows at a constant

aB,ad_ . . . . . -
+ (P20 5, 6%, with rate ry, i.e.,, the radius increases according

. 1 Fon, 1 . =(47R?ry, until the cell reaches its final mitotic radius
yoped= yraxgeh 3 Aij§<1 —FL> X E(ci’eccj'g R™. The volume growth rate, is deduced by assuming that
JeNN() ' cell growth is only performed during the,(®hase,
lig ~re:
+ Ci Cj C), (8) ~ 277(R(m))3
as illustrated in Fig. 4. Note that the above ansatz for the fv= 37 ' (10)
- . ! . G,

friction coefficient scales with the intercellular contact sur-

faces and therefore cells having many bounds to next neighyhererg_can be deduced from the minimum observed cycle
bors_ will move !ess than unbound cglls. Th|s_ is not an iso- min {ime and the durations of the SjGhase and the M
tropic choice, smce'the_forces contribute to its calc_ulatlonphase_ Afterwards, no further cell growth is performed. At
Using these approximations, the systédh becomes diago-  he end of the G phase a checkpointing mechanism is per-
nal; i.e., one has formed where the cell can switch into,@hase. If the cel-
. F lular tension exceeds the thresh@l@l" at this position in the
ri=_—. 9) cell cycle, the cell enters the (Jdhase; otherwise the cell
% enters the S/¢&phase. Note that a different criterion for
As an option the model is capable of including randomentering or leaving the gphase would also be possible:
forces in order to mimic random cellular movement. How- Cells might enter th&, phase at any time in the cell cycle if
ever, the corresponding physiologic cellular diffusion coeffi-the local nutrient concentrations fall below thresholds or—
cients are in the range dd(10* um?/s), which leads to alternatively—if toxic substances exceed certain thresholds.
small displacements only. In the case of growing tumor spheln the present paper we will restrict ourselves to interpreting
roids, the proliferation-driven tumor front will generally cellular quiescence as contact inhibition, since there is ex-
overtake cells that have separated due to random movemenggerimental evidence that in case of EMT6/Ro cells quies-
The stochastic nature contained in the mitotic direction anatence is not induced by lack of nutrierj&8,39.
the duration of the cell cycle obviously suffices to yield iso- During the S phase the DNA for the new cell division is
tropic tumor spheroids. The simulations shown here haveynthesized, whereas during Ghase the quality of the pro-
therefore been performed without an additional stochasticluced DNA is controlled. In our model we do not distinguish
force, unless otherwise noted. between the S phase ang @hase. At the beginning of the
phase the individual phase duration is determined using a
normally distributed random number generatd@] with a
In our model, cells have different internal states, whichgiven mean and width. After this individual time has passed,
we chose to closely follow the cell cycle in order to makethe cells enter mitosis.
comparisons with experimental data as intuitive as possible. At the beginning of the mitotic phase—which lasts for
Consequently, the cellular status determines the actions @bout half an hour for most cell types—a mother cell divides
the cellular agents. We distinguish between five statgs: Gand is replaced by two daughter cells. In the model these are
phase, S/Gphase, M phase, {phase, and necrotic; see also slightly displaced in random direction; see Sec. Il C. After-
Fig. 5. wards the daughter cells are left to their initially dominating

B. Cell cycle
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repulsive forces(1). As in the S/G phase the individual
duration of the M phase is determined using a normally dis-
tributed random number generator. Afterwards the daughter
cells enter the Gphase, thus closing the cell cycle. Note that
we do not differentiate between the internal phases of mito-
sis.

During the G phase, the cellular tension is monitored.
Cells reenter the cell cycle where they left(ite., at the
beginning of the S/@ phase if the cellular tension falls
below the critical thresholdP®™. Similar to the S/G phase
no growth is performed. Therefore, in our model, the differ-
ence between the S/Ghase and the gGphase is that the
duration of the first is determined by the normally distributed
individual time, whereas for the duration of the latter the
cellular tension is the determining factor. Consequently, the
cells in the G phase can serve as a reservoir of cells ready to
start proliferating as soon as there is enough space available,
which is common to many wound-healing modELS)]. P S

Intuitively, cells enter necrosis as soon as the nutrient con-
centration at the cellular position falls below a critical thresh-

old. We study different mechanisms for the induction of ne-

crosis within the model and will be able to rule out possible A
candidategsee Sec. Il A. Naturally, necrotic cells do not

consume any nutrients and do slowly decay. In our model v

this is represented by removing these cells from the simula-
tion at a rater"*“—without performing prior shrinking.
Note that the only stochastic elements involved so far are <. P

~ -

the direction of mitosis and the durations of the M phase and T

S/GZ phase. The first is rqulred bY the local assumption of FIG. 6. lllustration of the cell configuration right at proliferation
isotropy, whereas the latter is required by the fact that progef) ang at the end of the M phageght). At cell division, the radii
liferating cells having a common progenitor desynchroniz€y the gaughter cellsR® are decreased to ensure conservation of
rather quickly(usually after about five generatiopl]): For  the target volume during the M phase. The resulting strong repul-
these small systems @(2°) cells mechanisms such as nu- sive forces drive the cells apart quickly. An adaptive time step con-
trient depletion or contact inhibition cannot explain the de-trol ensures that the mitotic partners do not lose contact during the
synchronization. M phase.

contact between the daughter cells might be lost immedi-
ately. Still, with an adaptive time step, the initial separation
A cell will divide when the end of the S/Gphase has  of mitosis will happen on a time scale shorter than in reality.
been reached. The initial direction of mitosis is chosen ranTo the sake of simplicity we will not use modified mitotic
domly from a uniform distribution on the unit sphef0],  forces within this article. One should keep in mind that the
which is the simplest possible assumption. Note, howeverelative shortness of the M phase in comparison with the
that since the cellular movement during the M phase is notomplete cell cycle leads to a small fraction of cells being in
only determined by the mitotic partners but also by the surthe M phase. Therefore, we expect the consequences of our
rounding cells, the effective direction of mitosis may gener-simplifying assumption to be relatively small.
ally change during the M phase—depending on the configu- In Fig. 6 cells are shown at proliferation and right after
ration of the next neighbors. The radii of the daughter cellgshe M phase. The bell shape during mitosis resulting from
are decrease®®?=R™27173 to ensure conservation of the the model is in qualitative agreement with the physiologic
target volume during the M phase and the daughter cells argppearance of mitosis. One can also see that further intercel-
placed at the distanad) =2R™(1~-2"%) to ensure that ini- |ular contacts may be lost if the neighboring cells reside per-
tially the deformations of surrounding cells do not changependicularly to the direction of mitosis. The direction of mi-
drastic; see Fig. 6. One should be aware that at this stage thesis will generally change during the M phase—and thus
forces calculated in Eq1) cannot represent the actual mi- considerably differ from Fig. 6, lower panel—and thereby
totic separation forces, since the considerable oveHap the temporarily lost contact will on average be reestablished,
=RM(253-2) generates strong elastic forces in H4)  since the net forces will point to regions of low cell density
which has then been applied far beyond its validity for smalland thus lead to closure of the gaps. At the boundary of the
deformations. Therefore, to ensure numerical stability, arspheroid, however, cells may temporarily detach due to this
adaptive step-size control has to be applied in the numericahechanism. Though this had not been intended, it does not
solution of Eq.(6)—see the Appendix—since otherwise the seem in contradiction with reality, since there exists experi-

C. Proliferation
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mental evidencd42] that EMT6/Ro tumor spheroids lose onset of necrosis: For example, there could be two critical
cells at the boundary due to mitotic loosening. A macro-concentrations for both oxygen and glucose or just one com-
scopic detachment of cells from the spheroid boundary habined parameter with an unknown dependence on the local
not been observed in the simulation, since the spheroidoncentrations. In addition, there could also be other pro-
growth velocity has always been large enough to reestablisbesses such as necrotic waste material inducing apoptosis
contact after some time. However, such intermediate detactand/or necrosis, which will not be considered here.

ment events may very well contribute to the overall apparent

growth velocity.
E. Nutrient distribution

We consider the case of avascular tumor growth and
therefore assume that the transport of nutrients is performed
We view cells as bioreactors where oxygen and glucos@assively by diffusion. Consequently, the diffusion through
react to waste products such as lactose, water, and carbummor tissue and also through the culture medium is de-

dioxide. The clean combustion of glucose would require thescribed by a system of reaction-diffusion equations
molar nutrient uptake rate of oxygen to be 6 times the molar

D. Nutrient consumption and cell death

/gl
glucose uptake rate: ¢8,,0¢+60,— 6H,0+6CO,. How- 5U0Xgucz§[Dox/g|UC(X.t)§uox/gluC(X t)] - roxelugx - 1)
ever, for tumor tissue this cannot be the case as it is well ot ' ’ Y
known that in the direct vicinity of tumors the concentration (12)

of lactic acid increases considerably which is direct evidence
for the incomplete combustion of glucose. By experimentawhereu®9x, t) describes the local oxygen or glucose con-
estimations of average oxygen and glucose uptake rates feentrationD®/9"9x;t) the local effective oxygen or glucose
another cell line a considerable deviation from the ideal ratidiffusion coefficient(which depends implicitly on time via
has been found with about 1f23]. For EMT6/Ro cells, in  the cellular positions and r®/9Yx;t) the local oxygen or
[39] a ratio of about 1:3.9 is reported. glucose consumption rate. Though formally Efjl) might
Thus, in our model all viable cells consume oxygen andadmit negative nutrient concentratiofesen at low concen-
glucose, diffusing in the surrounding extracellular matrix attrations strong negative sink terms may in principle gxist
specific but constant rates. this can never happen in reality—provided the time step is
The nutrient uptake rates can in principle depend on th&ot too large: Cells will enter necrosighereby stopping nu-
cell type, the local concentration of both nutrients, the existrient consumptionif the local nutrient concentrations be-
tence of internal cellular nutrient reservoirs, and many othecome too small. As the reaction rates depend on the cellular
factors. However, few pieces of information about the quali-status, they become implicitly dependent on the nutrient con-
tative dependence are known: most rates in the literatureentrations; see also Secs. Il B and II D.
(see, e.g.[43]) are average values given in units of mole per In Eqg. (11) we implicitly assume that the transport of
seconds and volume of tissue since these data are obtainethtter can be described by an effective diffusion coefficient.
from whole cell populations without regard to the individual This does not have to be the case, since cellular membranes
cell size, status, and local nutrient concentration. In additionpose complicated boundary conditions especially for larger
the functional form of the dependence is unknown as wellmolecules such as glucose. In addition, convection may also
The simplest starting point is to assume that the nutrientontribute to matter transport. Only if the tissue is isotropic
uptake rates only depend—if at all—on the local nutrienton scales larger than a cell diameter is this assumption justi-
concentration. For example, when dealing with a single nufied. Consequently, the discretization of Efl) does only
trient, quite often a Michaelis-Menten-like concentration-make sense on lattices with spacings exceeding the cellular
dependent nutrient uptake rate is assumed; see, [d4]., diameters.
This, however, means the introduction of further parameters Though we use an effective diffusion coefficidy, it is
that may be difficult to fix with the data available. sometimes necessary to allow for diffusivities varying on
Depending on the cell type and on the local nutrient conscales larger than the cell diameter—especially for larger
centrations cells undergo apoptosis and/or necrosis whemolecules. For example, the effective diffusion coefficient of
subject to nutrient depletiof26]. In this specific application glucose is about 70@m?/s in water, whereas it is only
we choose necrosis as the dominant pathway to cell death00 um?/s in tissueg[47]. This effect is less pronounced for
and neglect the effects of apoptosis though there is expersmaller molecules such as oxygen with about 2406/s in
mental evidence that these processes are linked with eastater and 175Qum?/s in tissue[48]. Consequently, when
other [45]. Necrotic cells are randomly removed from the modeling in vitro multicellular tumor spheroids one will
simulation with a rate"®® The effect of apoptosis in the have to take spatially varying diffusivities into account to
simulation would be similar, though apoptotic cells do notappropriately model the nutrient concentrations on the spher-
break apart as necrotic cells but shrink and afterwards dissid boundary. In our model, the diffusion constant is set to
solve into small apoptotic bodid€6]. For the overall out- measured tissue diffusivities in the vicinity of cells and to the
come of the total growth curve we expect insignificantnormal diffusivities in water anywhere else. Therefore, by
changes by including apoptosis into the model. considering varying diffusivities one is able to keep the rect-
With our computer simulation model we can test differentangular shape of the diffusion grid which is favorable for the
hypotheses on which critical parameters may influence theaumerical solution; see also the Appendix. Note that a
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FIG. 7. Number of viable cells per spheroid for 0.8 and 16.5 mM glucose concentrations and either 0.07 mM oxygen condéaftration
pane) or 0.28 mM oxygen concentratidright panel. Experimental datésymbols were read off fronj26], whereas lines correspond to the
computer simulations.

diffusion-depletion zone as iM9] is thereby automatically the nutrient concentrations have been kept fixed.
incorporated into the model. The difference is that here the We have tested the possibility that there exist critical con-
model does noa priori impose spherical symmetry. It can be centrations for the two nutrients separately. However, in this
checked, however, by direct observation of the sphericallycase either the glucose or oxygen concentration dominantly
shaped nutrient isosurfaces that the rectangular shape of thimits the cell population dynamics. This does not reproduce
boundary does not greatly influence the nutrient distributiorthe experimental datg26], since the growth curves for one
near the tumor. of the nutrient concentrations being kept constant depend
Another possibility would be to solve the nutrient diffu- strongly on the concentration of the other nutrient. Therefore,
sion within the spheroid only by assuming a spherical tumoisince low oxygen and large glucose concentrations can result
symmetry with a time-dependent boundary moving with thein similar population dynamics as large oxygen and low glu-
spheroid size. However, with such an approach the sphericabse concentratio®6], both concentrations must enter the
symmetry would not be an outcome but an intrinsic ingredi-critical parameter. We have also tested the possibility of
ent of the model. Consequently, in such a model the spheroidoncentration-dependent nutrient consumption rates with the

shape would not be of any comparative value. functional form of the Michaelis-Menten-type kinetics:
Equation(11) only has a defined solution if the initial (pmax_ pmin) cnut

conditions and the boundary conditions are set. AR8] it = pmin g (12

has been verified that the nutrient concentration outside the Cip*+C

tumor spheroid did not vary strongly between the periodicrhis model, however, uses additional parameters that cannot
refilling of nutrients, we approximated the experimental syS+yq fixed with the present data—even when omittifij. In
tem by imposing Dirichlet boundary conditions throughout yqgition, the values foCy,, in the literature for oxygen-

the simulation. The corresponding initial and boundgry CONgependent proliferatiof50] of 0.0083 mM point the direc-
centrations have both been set to the values used in the exgn that the oxygen consumption rates are always within the
periment. range of saturation, since the local oxygen concentration has
always been larger than 0.04 mM throughout the spheroids.
Ill. RESULTS Consequently, we have assumed constant cellular oxygen
and glucose uptake rates for non-necrotic cells in the present
model. We chose the product of oxygen and glucose concen-
The overall cell number is a parameter which can betration to be the limiting factor to sustain cellular viability.
quantified experimentally, either indirectly by simply calcu- This simple ansatz did suffice to reproduce the experimental
lating cell numbers from observed tissue volumes or directlycellular growth curvegsee Fig. 7. The best fit is achieved
by extensive automated cell counting.[26] the cell num-  with the parameter set shown in Table |. The corresponding
ber has been determined indirectly for different concentratumor morphology is addressed in Sec. Il B.
tions of oxygen and glucose. With our model we have calcu- Unfortunately, no error bars are given j26] and the
lated growth curves for different nutrient concentrations andexperimental data scatter considerably even on a logarithmic
different hypotheses of nutrient uptake and necrosis inducscale; see Fig. 7. Apart from the difficulty of establishing a
tion. The simulations have been compared with four series oflefined experimental system in biology, this large scatter is
experimental data, where four different combinations of oxy-also due to the necessity of destroying the spheroids during
gen and glucose concentrations have been investigatethe measurements. Therefore, a whole ensemble of spheroids
Naturally, within one set of simulations all parameters buthad to be measured. Since the monoclonality of these sphe-

A. Population dynamics
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TABLE |. Best fit model parameters that are used in the simulations shown in Figs. 7-9. See text for explanations.

Parameter Value Unit Comment
ECM viscosity 5S¢ 5x 1073 kg/(ums) [10], estimate
Adhesive frictiony™a* 0.1 kg /(um?3s) [10], estimate
Receptor concentratiori®® 1.0 No. fixed
Ligand concentratior'9 1.0 No. fixed
Oxygen diffusivity Dz ox 1750.0 wm?/s (48]
Glucose diffusivityDgg g 105.0 um?/s [47]
Mitotic phaser™ (3.6+0.9 x10° s estimate
S/G, phasers/® (18.0+7.2 x 103 s estimate
Shortest cycle time™n 54.0x 10° s [26,38,43, estimate
Mitotic cell radiusR(™ 5.0 um estimate
Cell elastic modulus 1.0x10°3 MPa [10], estimate
Cell Poisson number 0.5 No. assumption
Adhesive coefficienfad 1.0x 10 N/ um? eq. overlap
Necrosis absorption rate8¢%" 2.0x10°6 cells/s estimate/fit
Critical cell tensionP° 0.6x1073 MPa fit parameter
Oxygen uptake 20.0x 10718 mol/(cell 9 fit parameter
Glucose uptake9'c 95.0x 1078 mol/(cell 9 fit parameter
Critical productp®aluc 0.025 mM fit parameter

roids is not ensured, it is nat priori clear whether a single equation: The scatter of the data does not allow us to exclude
spheroid might contain several species or whether differerthis possibility. However, given that tumor spheroids saturate
spheroids might belong to different species with individualat a certain size, the above model cannot be valid in all
growth characteristics. In order to employ a procedure tdegimes of tumor growth.

minimize deviations between the simulation and experimen- Since the mechanism of contact inhibition leads to cells
tal data we defined estimated error bars by calculating théesting in G rather than cells entering necrosis, the differ-

difference to the artificial Gompertz growth curve, ences can easily be analyzed in the cell cycle distribution. In
Fig. 8 it is evident that for 0.07 mM oxygen and 0.8 mM

a _ glucose concentratior(sipper left panelthe nutrient starva-
N(t) = No exp{ﬁ(l -€ Bt)] (13)  tion is the dominant limiting factor to cell cycle inhibition,
since there are nearly no cells in thg @hase and the ma-
which is known to reproduce most growth processes in najority of cells are necrotic. In the case of nutrient abundance
ture with remarkable accurad¢$1]. (0.28 mM oxygen and 16.5 mM glucose, Fig. 8 lower right
Not every hypothesis on nutrient consumption and necropanej, however, the majority of cells reside in thg @hase
sis induction leads to acceptable agreement with experimergiuring days 6-23, which is an indication for contact inhibi-
tal data—indicating the sensitivity of the model. The theo-tion being the dominant reason for the crossover, as is also
retical predictions lie within the scattering region; see Fig. 7.assumed in other modef40,37. This is also confirmed by
Qualitatively, one can see that for all the simulations thethe cross sections of the computer-simulated tumor sphe-
initial exponential growth phase soon enters a crossover to ¥ids; see Fig. 9. Though in the case of nutrient abundance
polynomial growth. In our model this crossover is due to twonecrosis sets in much later, the number of necrotic cells rises
distinct mechanisms—contact inhibiton and nutrientat @ much stronger slope and it is to be expected that necrosis
depletion—which lead to the similar outcome that after awill displace the contact inhibition as the major cause for
certain time dominantly the spheroid surface will contributesurface-dominated growth after 25 daysvith overall
to the proliferation—i.e., roughly 5x 10° cells involved, the simulations become very
extensive and memory consumjn@uch a displacement of
dN _ N2 (14) dominating mechanisms is already visible for some interme-
dt - diate nutrient concentrations. For example, in the case of
0.07 mM oxygen and 16.5 mM glucose concentrations the
which has the polynomial solutioN(t)=No[1+8t+B%*/3  number of cells in the @phase first rises to reach its maxi-
+B%°3/27] with B=a/N§"® [27]. Apart from the fact that ne- mum after 10 days and afterwards decays in combination
crosis is evidently more likely when nutrients are rare, thewith a strong rise in necrotic cell&ig. 8, upper right pangl
mechanisms cannot be clearly distinguished with a glance @uch a behavior is not observed in the regime of large oxy-
the total growth curves in Fig. 7. Even in the case where botlyen and low glucose concentratioifdg. 8 lower left panel
nutrients are rare, the growth curve can be fitted by the abowahere necrosis and contact inhibition set in simultaneously
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FIG. 8. Cell cycle distribution for different oxygen and glucose concentrations. Depending on the external nutrient concentrations,
significant differences mark the dominance of different mechanisms to limit the cell cycle. Fits to the regions of exponential growth—marked
by the complete absence of necrotic and quiescent cells—reproduce the shortest observed cycle time within statistical fluctuations. The initial
oscillations in the subpopulations in the cell cycle stem from the fact that the cells divide synchronously at the beginning—their frequency
is the inverse cell cycle time. After each cell division, the daughter cells draw new duration times for thel®&8 and the M phase from
a Gaussian distributiofcompare Table)] which leads to a dampening of the oscillations and finally to complete desynchronization of cell
division. The occurrence of contact inhibition or necrosis increases the dampening effect, since the migration through the cell cycle is
impaired. Note that in the case of few nutrients contact inhibition does not play a role, as there are no quiesdén tefi)s

and nutrient starvation is the main limiting factor. This is dueouter layer of proliferating cells. Qualitatively, this morphol-
to the considerably decreased glucose diffusion coefficient iogy is well reproduced in the case of initial nutrient abun-
tumor tissue, whereas the diffusion coefficient of oxygen isdance; see the upper right panel in Fig. 9. In the case of
nearly the same in tissue and water; compare Sec. Il E. Cothutrient starvation, however, there is virtually no layer of
sequently, the already low glucose concentration of 0.8 mMMyuiescent cell§Fig. 9, upper left pangl as contact inhibition

at the boundary drops rapidly when the number of tumolis not of importance in this scenarisee Fig. 8, upper left
cells increases, since the new glucose supply diffuses Velane). This would be different if quiescence is induced by

slow from the outside. nutrient limitations: In this case, the necrotic core would al-
ways be surrounded by a layer of quiescent cells. Indeed,
B. Tumor spheroid morphology experimental observatiorj88] suggest that neither nutrient

To estimate the quality of a mathematical model one hagepletion nor the related acidfiH induces the cellular qui-
2scence. It is evident from Fig. 9 that the size of the layers

to find experimentally accessible parameters. This is espéa : L
cially difficult when thinking about tissue morphology, since déPends on the boundary concentrations. In addition, it also
very often the patterns are hard to quantify in terms of numdepends on the nutrient gonsumptmn rat(_es and d|ffus_|vmes
bers. The morphology of three-dimensional tumor spheroid®f 0xygen and glucose within the tumor tissue. The size of
is rather simple: An inner necrotic core is surrounded by #he necrotic core is also very sensitive to the rate at which
layer of quiescent cells, which is in turn surrounded by thenecrotic cells are being removed from the simulation.
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FIG. 9. Cross section of computer-simulated tumor spheroids after 23 days of simulation time. The first row shows the cellular status
(necrotic cells painted black, quiescent cells in dark gray, cells in the cell cycle in lighter shades)pivipergas the second row visualizes
the cellular tensiortfree cells painted black, cells under strong pressure in light)ghwtrient concentrations from left to right are given by
0.07 mM oxygen and 0.8 mM glucose, 0.07 mM oxygen and 16.5 mM glucose, 0.28 mM oxygen and 0.8 mM glucose, and 0.28 mM
oxygen and 16.5 mM glucose.

Note that in the spheroid cross sections it is evidenfarge nutrient concentrations. The sometimes observed devia-
that—if oxygen and/or glucose are limited—a relatively tions from the spherical forri26] can also have additional
small number of cells with constant nutrient uptake rateseasons: The spheroids might be heteroclonal while all cells
suffices to drop the nutrient levels under the critical threshin our simulation are assumed to be monoclonal. If a spher-
old, thus leading to the onset of necrosis and the absence ofd does not develop from a single but two genetically dif-
a layer of quiescent cells in the end of the simulations; comf{ering cells, these cells might exhibit different growth char-
pare also Fig. 8. This is different for a model with acteristics.
concentration- or cell-cycle-dependent nutrient uptake rates.

In the first case the absolute value of the nutrient concentra-

tion gradients would be decreased, thus giving rise to a

broader viable layer which—in turn—could allow for the  The growth curves shown in Fig. 7 have been calculated
existence of a quiescent layer. In the second case the intensing the—comparably many—parameters in Table I. How-
mediate emergence of cellular quiescefs®e Fig. §would  ever, since mainly deterministic and rather physically moti-
also decrease the absolute value of the nutrient concentratiofated interactions are assumed, more parameters than in par-
gradient towards the necrotic core, which would prolong andial differential equation or cellular automaton models can be
eventually stabilize the existence of a quiescent layer also forccessed by independent experiments and do not need to be
nutrient-depleted configurations. Therefore, in order to disvaried as fit parameters. Some of these parameters deserve
tinguish between nutrient uptake models, the tumor spheroidpecial attention: The elastic parameters of EMT6/Ro tumor
morphology is an important criterion, whereas the simplecells might differ from those in our simulation, where incom-
total growth curve is not sufficient to make quantitative pre-pressibility has been assumed—see Table I. Assuming re-
dictions about the mechanisms at work. duced Poisson ratios=0.3 and elasticities oE~ 750 Pa

Interestingly, the spheroids in Fig. 9 are fairly round, es-{10,50, one may obtain deviations in the elastic forces in Eq.
pecially for the case where nutrients are provided in abun{l) in the range of up to 50%. However, even with these
dance. This is due to the stochastic nature of the mitotidifferent elastic constants the growth characteristics do not
direction which forces initial differences to average out afterchange significantly: This is due to the fact that the cellular
some time—which can easily be verified by restarting thetensions relax on a much shorter time scale than the cell
computer code with similar parameters but different seedycle time. An initial cycle time of 17 h has been obtained in
values for the random number generatdata not shown  [26] using a Gompertz fit to the spheroid volume. This fit had
This is in agreement with many spheroids observed in thdeen applied to already existing small spheroids that may
experiment[26] and in other computer simulation87]. exhibit growth retardation effects. For cells that had sepa-
However, the spheroids are less spherical for extreme nutriated at the spheroid boundary, a cell cycle time of only 13 h
ent depletion, since, first, the small cell number yields les$42] has been observed. Therefore—and in order to repro-
stochastic events that contribute to the averaging and, seduce the slopes correctly—we have used a slightly decreased
ond, the emergence of localized holes in the necrotic core ishortest possible cycle time. The cell tension defined here is
not counterbalanced by a strong mainly isotropic prolifera-simply a sum over all normal tensions with the next neigh-
tive pressure from the proliferating rim—as is the case forbors. The value that we have obtained as fit parameter is

C. Parameter dependence
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about 6 times as large as the critical cellular compressioffable I. The large scatter of the data in the case of nutrient
used as a criterion for contact inhibition in similar simula- depletion(Fig. 7, left panel does not exhibit a clear satura-
tions (90 Pa in[10]). In part, this may be due to the Voronoi tion within 25 days, which is not reached in the other con-
surface correction—surfaces tend to be smaller than sphefgurations anyway. For the explanation of a growth satura-
surfaces—which leads to generally larger normal tensiongion the nature of the additional mechanism remains
The remaining discrepancy should be attributed to the factontroversial. For example, [25] an effective movement of
that we use a different cell line and the inherent model dif-cells towards the necrotic core has been observed, leading to
ferences. The removal rateof necrotic cells did not have a the assumption of a chemotactic signal secreted by necrotic
considerable impact on the macroscopic number of viableells. The corresponding computer simulations[&} did
cells and the spheroid size. However, it can also be seen ilead to saturation. Since it is somewhat arbitrary to assume
Fig. 9 that due to the removal of necrotic cells, holes emergethat tumor cells follow a necrotic signal, we also tested a
Then the mechanical coupling from the necrotic tumor coresimpler hypothesis:
towards the boundary will be disrupted. Therefore, for the In Fig. 9 macroscopic holes are visible within the necrotic
used elastic and adhesive parameters, the parametainly  core—created by the removal of necrotic cells from the
controls the number of necrotic holes in the center. Note thasimulation. Once such a hole is established, it even tends to
this is different, however, in a scenario with considerablygrow, since the intercellular adhesion is of very short range.
increased adhesion, where the mechanical coupling is n¢Recall that Eq(2) depends on the contact surfacéle have
disrupted and the rate constantioes have an influence on found that an increase of adhesive normal forcesf¥b
the spheroid size and thereby on the overall cell number. =0.0003uN/um? suffices to close the visible holes

In accordance with the assumption of contact inhibitioncompletely—thereby inevitably coupling the proliferating
being the dominant cause for the crossover from exponentialng to the necrotic core which finally leads to apparent
to polynomial growth in the case of nutrient abundance, theyrowth saturation; compare Fig. 10. Note, however, that in
initial phases of the theoretical growth curve for 0.28 mMthe presence of stochastic forces, complete saturéésting
oxygen and 16.5 mM are dominantly dependent on the critiinfinitely long) can never be observed, since already the sel-
cal cell tension, whereas the other growth curves—especiallgjom case of cells leaving the spheroid will lead to further
for nutrient depletion—strongly depend on the nutrient up-colonies that might recombine. Consequently, the volume
take rates and the necrotic parameter. Generally, the laless generated by removing necrotic cells with a certain rate
stages of spheroid growth depend critically on the nutrientmust be balanced by a movement of proliferating or quies-
related parameters. The resulting parameters for nutrient ugent cells from the outer layers into the necrotic core. In
take rates are well within the range observed in the literaturaddition, the outward component of the proliferative pressure
[26,38,39,52,58 though some considerable variances everon the outer layer is counterbalanced by the increased cellu-
within the literature exist. Apart from the fact that mostly lar adhesion as well. For such a system, a growth saturation
different cell lines are analyzed, the additional problem exdis inevitable: As in the late stages of spheroid growth the
ists that the values in the literature are usually volume-ellular birth rate can be assumed to be proportional to the
related uptake rates that have been fitted to experimentabheroid surfaceR,,~ @N?3, and the rate of cell removal
data. Consequently, the extracted cellular uptake rates dés proportional to the number of necrotic cells residing in the
pend on the corresponding cellular packing density of theseenter, the total cell number can be described by
systems. It must be kept in mind that these rates represent
average values over the whole ensemble of cells present in dN
the spheroid. For example, quiescent cells could have a con- dt = aN(t) = AIN(D) - yN*E(0)], (19
siderably decreased nutrient uptake rate. In addition, there is
evidence that glucose uptake rates can be related to the l0Gglth «, 3,y being positive constants. The above equation
concentration of available oxygd88]. The present quality resembles the growth law of Bertalanff§1]. The solution
of the data, however, does not allow us to discriminate bepf this equation reaches the steady sthte=(a/B+7v)3,
tween more sophisticated models which is stable for3>0. Therefore, in this regime nutrient

Note that in the overdamped approximation of E&).the  depletion is the dominant factor limiting tumor spheroid
solution is calculated as a ratio of combined elastic and adgrowth.
hesive forces to a friction parameter, which is largely influ-~ e conclude that growth saturation of both cell number
enced by cell-cell adhesion. Therefore, the model will not beang spheroid radius in off-lattice computer simulations can
very sensitive to the specific adhesion coupling constants ange reached by assuming increased intercellular adhesion
the adhesion-determined friction, as rather their ratio iorces. In that case viable cells move towards the necrotic
mainly influencing the model behavior as long as elasticcore (data not shown The assumption of some diffusing
forces are small. signal as in[8] is not necessary. Interestingly, during the
period of saturation, deviations from the spherical shape can
emerge: The position of unstable intermediate holes within
the necrotic core is randomly distributed and gives rise to

A complete saturation of the cell number or spheroidmacroscopic deviations from spherical shape on the spheroid
size—as suspected pg6] and other$25]—cannot be repro- surface. Therefore, an irregular spheroid shape can also be
duced in the computer simulations with the parameters iexplained by individual durations of the necrotic process.

D. Saturation of growth curves
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FIG. 10. After assuming an increased adhesive coupling the emergence of holes within the necrotic core is completely inhibited. In
addition, the cells have been displaced randomly by a Gaussian distribution withAxdti2DAt at every time step. A steady-state flow
equilibrium is established, leading to approximate growth saturation of the spltlerfoidh the observed time range. No further mechanisms
need to be assumed. In addition, the fast closure of holes in the necrotic core can lead to deviations from the spherical(sgimné&tejis
in the cell cycle are marked in light grey, quiescent cells in grey, and necrotic cells are depicted by dark grey.

Note that another candidate for a cell loss mechanism is thieoth the oxygen and glucose concentrations simultaneously.
shedding of cells at the spheroid surfdde,54. All these A saturation of growth could be obtained by increasing in-
mechanisms could be combined with an involvement oftercellular adhesive forces threefold.

metabolic waste products in the induction of necrosis. On the one hand, the typical spheroid morphology is re-
produced qualitatively very well. On the other hand, a quan-
IV. SUMMARY titative reproduction not only of cell population growth

curves but also of spheroid morphology could allow for a

We have demonstrated that the Voronoi-Delaunay hybridnore detailed analysis of nutrient consumption models: For a
model can very well be used to establish agent-based celtifferent cell line an oxygen:glucose uptake ratio of about
tissue simulations. The Voronoi-Delaunay approach provided:1 has been founf43]. In contrast, our computer simula-
some advantages: First, compared to the description of celtfons point to the scenario that the oxygen consumption rates
by deformable spheres, the Voronoi tessellation provides aare much smalletabout 1:5 than the glucose consumption
improved estimate of contact surfaces within dense tissuesates(Table ), though the values are within the ranges of
The present model combines the advantages of both modaptake rates in the literature if considered separately. This
concepts. Second, the weighted Delaunay triangulation is adiscrepancy may be due to several reasons. First, there is
efficient method to determine neighborship topologies forstrong experimental evidence that the ratio of oxygen and
differently sized spherelike objects. In addition, it can effi-glucose uptake in the case of EMT6/Ro cells considerably
ciently be updated in the case of moving objects. The modadliffers even from the ratio of 1:1. For example[89] a ratio
is very rich in features and therefore allows many compari-of 1:3.9 is suggested. Second, the effective diffusivities
sons with the experiments. It can easily be combined withwithin tissue for oxygen and glucose obtained frp#8,47|
established models on cellular adhesion and elasticity thahight not be correct—this would lead to different currents of
rely on direct experimental observables. Therefore it allowsxygen and glucose within the spheroid. Third, the model
some of its parameters to be fixed by independent experassumptions of roughly constant nutrient uptake rates and the
ments. The parameters which had to be determined with rearoduct of both concentrations being the critical parameter
spect to macroscopic quantities represent existing physicdbr necrosis might not be correct.
guantities. Since such quantities can be falsified in future We have seen that the quantitative analysis of the overall
experiments, the model provides predictive power to agrowth curve can in principle be used to determine unknown
greater extent than differential equation or cellular automaparameters. The current experimental data, however, exhibit
ton approaches. too much scatter to determine parameters with accuracy;

Unlike previous modeld8,37,49—which only consid- therefore, a combined experimental and theoretical investi-
ered the influence of one nutrient on the dynamics of threegation of multicellular tumor spheroids of a single well-
dimensional multicellular tumor spheroids—we were able todefined cell line is of urgent interest.
reproduce the experimental growth curves with a single pa- The presented model is especially suitable for systems
rameter set by considering the spatiotemporal dynamics okith a comparably large number of cells. In addition, it sup-
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ports different cell types as well. The cell shape, however, i®asily be solved numerically. There are a variety of estab-
restricted to convex cells. This makes it suitable to modelished numerical algorithms to choose from and we decided
rather dense cell tissues such as, e.g., epithelia where one canstick with a simple forward-time discretization—which is
investigate the roles of differential adhesion, elastic interacjust a first-order method. The first reason for this is that the
tions, and active cellular migration in tissue flow equilib- uncertainties arising from the cell model presumably exceed
rium. Further applications of the Voronoi-Delaunay methodthe numerical errors by orders of magnitude. In addition,
will therefore include the modeling of epithelia, bone forma- higher-order methods such as, e.g., the Runge-Kutta method
tion, and biofilms. In addition, the weighted Delaunay trian-require intermediate evaluations of the forces. In our model,
gulation is a suitable tool for the modeling of boundary however, this would necessitate intermediate refinements of

conditions—e.g., in froths. the triangulation, thus considerably increasing the numerical
complexity. Multivalue predictor-corrector methods are also
ACKNOWLEDGMENTS not suitable, since in the present model the intercellular

orces are not continuous, especially during mitosis. Keeping
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APPENDIX

Program architecture Reaction-diffusion equation

The programming languagec++ supports object- .Three-<.jirn'e:nsional reaction-diffusion equations _often con-
oriented programming and thus enables us to identify ingisStitute 5_13|gn|f|cant challenge for presgnt computational hard-
vidual cells with instantiations of objects. These objects aréV@ré since for a reasonable resolution a large number of
stored in a list to allow for efficient deletiofapoptosis or lattice _pomts is needed. In addition, not every algorlthm is
necrosi$ and insertior{proliferation. We had already imple- numerically stable. For example, the normal algorithm is
mented a weighted kinetic and dynamic Delaunay triangmauncondltlonally stable in two .dllmenS|ons .but not in three
tion in three dimensions[15] which provides—once [55]. Tr_u_)ugh there ex_lst mod|f|_eelD| glgorlthms that are
calculated—constant average access to the next neighbdtgconditionally stable in three dimensions as well, the com-
for differently sized spheres. This is achieved by using pointP/ete solution of the reaction diffusion systeitd) is quite
ers on cells as the objects in the weighted Delaunay triangd[‘tens"/e in three dimensions—unless one is restricted to low
lation and storing the triangulation vertices in the cell ob-"e€solutions. o , _
jects. The Voronoi tessellation—which is the geometric dual If the diffusion coefficients and the considered time steps
of the Delaunay triangulation—provides the three-aré comparably large, the steady-state approximaigist
dimensional contact surface corrections. ~0 can be applied and by neglecting the time dependences

If the spatial steps are not too large, the neighborship cafd- (11) reduces to a Helmholtz problem
be updated over time with an on average linear effort; i.e., - - -
the ti?ne necessary to update the neighbgorship relations after [VDO]-[Vu()]+ DO V2u(x) = r(x). (A1)
movement scales linearly with the number of cells. This limi-The steady-state approximation has already been applied in,
tation can be safely ensured by an adaptive step-size alge-g., [49]. Equation(Al) can be solved numerically with
rithm in the numerical solution of E9). In our simulations, comparably low computational effort and—more
the average time step size was around 30 s, thus leading f@portantly—with numerically stable methods. Since the dif-
roughly 60 000 time steps for 23 days of simulation time. Atfusjon coefficients of both oxygen and glucose are very large
every time step the list of cells is iterated and for every cellin comparison with the cellular movements, we have decided
all new variables are calculated. Afterwards the cellular pato employ the steady-state approximation when solving the
rameters are synchronized. Note that discontinuous evenginamics of the nutrients. The methods to solve i)
such as cell proliferation and cell death correspond to inserdiffer significantly in their convergence time. A simple relax-
tion or deletion of just one cell in the list and become valid in gtion method such as the Jacobi or Gauss-Seidel méftd
the next time step. The Delaunay triangulation and the diffudoes not converge fast enough. In the case of spatially con
sion grid are then updated with the cellular displacementstant diffusion coefficients the fast Fourier transform can be
and radius changes or nutrient consumption rates, respeemployed. Tumor tissue, however, does have a different dif-
tively. Therefore, all coupled equations are solved synchrofusivity than agaf43,56 which made us favor a V-cycle-
nously by storing the solution of every equation until the multigrid algorithm that uses Gauss-Seidel relaxaffor.
solutions of all equations have been calculated. Since the discretization of Eqgl1) and(A1) is done on a
simple 64X 64X 64 cubic lattice with a lattice constant of
15.625um—which is larger than the cellular diameter—and

In the overdamped approximation, the cellular equation ofas the cell positions are arbitrary in our off-lattice model, we
motion (9) is just a first-order differential equation that can do use a trilinear interpolation to determine the local concen-

Cellular kinetics
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tration from the concentrations on the eight closest lattice Fitting experimental data

nodes, In order to minimize the difference between theoretical
and experimental observables we performed roughly 150
computer simulations over a wide range of parameters until

f(X,¥,2) = foool1 =X)(1 =y)(1 =2) + f1ox(1 ~y)(1 - 2) the visual agreement with the experiment was satisfactory.
FFo (1 =XIV(L =2) + Foe(1 =3)(1 =V)Z Afterwards we started Powells methfisb] with several per-
oud e )+ ool /(1Y) turbations around this optimal parameter set by minimizing
+ 101 =2) + f1oX(1 = Y)Z+ fo14(1 —X)yz the squared differences of the logarithms of theoretical and
experimental growth curves—i.e.,
+f110Xy2Z, (A2)

=S S NN Npyp 2 (A3)
wheref; represent the values of the functiéron the cor- izexp j:meas i
ners of a cube of length 1. The reaction rates created by thghere thep, are the parameters that have been varied and
cells are handled similarly by distributing them on the closesthe errors of the experimental data poinishave been esti-
lattice nodes. The local diffusion coefficients can be set bymated by calculating the difference onto a Gompertz growth
the tumor cells according to their spatial position. This ap-curve. Note that it is a purely geometric and therefore deter-
proximates the correct boundary conditions. The size of theninistic algorithm, which opens the possibility that it will
diffusion grid was with 1000 um?® always completely en- terminate within a local minimum. In order to decrease the
closing the tumor spheroids and by direct observation of thgrobability of terminating within a local minimum, several
nutrient isosurfaces it was made sure that the rectangulauns should be performed. However, the changes of param-
boundary conditions did not influence the spheroidal conceneters are negligible, since due to the strong scatter of the
tration isosurfaces in the vicinity of the tumor spheroid. data, the visual data fit is satisfactory already.
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